Increased fetal hemoglobin (HbF) levels lessen the severity of symptoms associated with sickle cell disease and beta-thalassemia and increase the quality of life and life span of patients. A complete understanding of the mechanism(s) responsible for developmental regulation of globin gene expression (globin gene switching) is important to develop new therapies to increase HbF. Over 30 years of experimental evidence from multiple laboratories strongly supports the hypothesis that DNA methylation plays a fundamental role in silencing expression of the gamma-globin gene in the adults. The use of pharmacological inhibitors of DNA methyltransferase to increase HbF levels was pioneered in the baboon model in our laboratory and led to a series of clinical trials that demonstrated the effectiveness of these drugs in patients. Using the baboon model, our laboratory also made the novel and important observation showing that the gamma-globin gene promoter was demethylated in a progressive manner during fetal liver erythropoiesis. The mechanism responsible for DNA demethylation of the gamma-globin promoter during fetal liver erythropoiesis remains unknown. Our preliminary data shows that increased levels of 5-hydroxymethylcytosine (5-hmC), a novel modification of 5-methylcytosine (5-mC) recently found in eukaryotic cells that is catalyzed by the TET dioxygenase family, are associated with the gamma-globin promoter in erythroid cells expressing elevated levels of gamma-globin. 5-hmC has been proposed to be a key intermediate in both passive and active mechanisms of DNA demethylation and therefore our preliminary data strongly suggests that 5-hmC is involved in the mechanism responsible for demethylation of the gamma-globin gene during fetal liver erythropoiesis. This proposal will investigate the hypothesis that DNA demethylation of the gamma-globin gene during fetal erythroid differentiation is accomplished through a TET- mediated pathway involving 5-hmC. Validation of this hypothesis will define a crucial mechanism (s) in normal developmental fetal stage-specific activation of gamma-globin expression. We envision that detailed knowledge of the normal, physiological mechanism responsible for gamma-globin gene demethylation during fetal liver erythropoiesis will foster the development of new strategies targeting this mechanism to achieve DNA demethylation and high level activation of the gamma-globin gene to increase HbF in patients.

Public Health Relevance

Elevated fetal hemoglobin levels lessen the severity of sickle cell disease and beta-thalassemia and increase the lifespan of patients. A complete description of the mechanism responsible for the regulation of gamma-globin gene expression would be important in the design of future pharmacological and molecular therapies to increase HbF. DNA methylation is a key factor in the regulation of gamma-globin gene expression. The experiments described in this proposal seek to understand the role of 5-hydroxymethylcytosine in the mechanism(s) responsible for DNA demethylation of the gamma-globin promoter during fetal liver erythropoiesis. It is our long term goal to understand the mechanism responsible for developmental regulation of the globin gene expression as a means to developing therapies for sickle cell disease and beta-thalassemia. We expect that our studies will foster the development of new strategies targeting the normal, physiological mechanism responsible for gamma-globin gene DNA demethylation to achieve increased fetal hemoglobin levels in patients.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
5R01HL114561-03
Application #
8677966
Study Section
Molecular and Cellular Hematology (MCH)
Program Officer
Qasba, Pankaj
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Illinois at Chicago
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
City
Chicago
State
IL
Country
United States
Zip Code
60612
Mahmud, Nadim; Petro, Benjamin; Baluchamy, Sudhakar et al. (2014) Differential effects of epigenetic modifiers on the expansion and maintenance of human cord blood stem/progenitor cells. Biol Blood Marrow Transplant 20:480-9
Madzo, Jozef; Liu, Hui; Rodriguez, Alexis et al. (2014) Hydroxymethylation at gene regulatory regions directs stem/early progenitor cell commitment during erythropoiesis. Cell Rep 6:231-44