High plasma cholesterol and diabetes are major risk factors for atherosclerosis. We have shown in mouse models that lowering cholesterol levels promotes macrophage emigration and regression of atherosclerosis. This is mediated in vivo by the induction of the chemokine receptor CCR7 via LXR?. Moreover, regression of atherosclerosis and expression of CCR7 are impaired in diabetic mice. We have recently found that phosphorylation of S198 of LXR? is high in progressing atherosclerotic plaques and in vitro decreases CCR7 transcription. Therefore, we propose that changes in plasma cholesterol and glucose levels are important modulators of LXR? gene expression through changes in LXR? phosphorylation at S198. To test this, we will take an integrated systems biology approach combining powerful mouse models of atherosclerosis regression with sophisticated genomics approaches to elucidate mechanisms of LXR?-mediated gene regulation in atherosclerosis and diabetes. Insights from these basic studies will inform new approaches to treating atherosclerosis, particularly in diabetics.

Public Health Relevance

Patients with diabetes have a number of complications including cardiovascular disease (CVD). In fact, high cholesterol and high glucose are recognized risk factors for CVD. Using powerful mouse and cell culture models, coupled with state of the art genomic approaches, we will examine the effects of high cholesterol and high glucose on the action in macrophages, the building blocks of atherosclerotic plaques, of the nuclear receptor LXR?, which protects these cells against adverse effects of high cholesterol and glucose. Understanding the mechanisms whereby cholesterol and glucose impact LXR? gene regulatory functions will inform new approaches for treating diabetes and atherosclerosis.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Molecular and Cellular Endocrinology Study Section (MCE)
Program Officer
Liu, Lijuan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
New York University
Internal Medicine/Medicine
Schools of Medicine
New York
United States
Zip Code
Yu, Mikyung; Amengual, Jaume; Menon, Arjun et al. (2017) Targeted Nanotherapeutics Encapsulating Liver X Receptor Agonist GW3965 Enhance Antiatherogenic Effects without Adverse Effects on Hepatic Lipid Metabolism in Ldlr-/- Mice. Adv Healthc Mater 6:
Barrett, Tessa J; Murphy, Andrew J; Goldberg, Ira J et al. (2017) Diabetes-mediated myelopoiesis and the relationship to cardiovascular risk. Ann N Y Acad Sci 1402:31-42
Fisher, Edward A (2016) Regression of Atherosclerosis: The Journey From the Liver to the Plaque and Back. Arterioscler Thromb Vasc Biol 36:226-35
Savic, Daniel; Ramaker, Ryne C; Roberts, Brian S et al. (2016) Distinct gene regulatory programs define the inhibitory effects of liver X receptors and PPARG on cancer cell proliferation. Genome Med 8:74
Shrestha, Elina; Hussein, Maryem A; Savas, Jeffery N et al. (2016) Poly(ADP-ribose) Polymerase 1 Represses Liver X Receptor-mediated ABCA1 Expression and Cholesterol Efflux in Macrophages. J Biol Chem 291:11172-84
Ouimet, Mireille; Hennessy, Elizabeth J; van Solingen, Coen et al. (2016) miRNA Targeting of Oxysterol-Binding Protein-Like 6 Regulates Cholesterol Trafficking and Efflux. Arterioscler Thromb Vasc Biol 36:942-951
Zhang, Xue-Qing; Even-Or, Orli; Xu, Xiaoyang et al. (2015) Nanoparticles containing a liver X receptor agonist inhibit inflammation and atherosclerosis. Adv Healthc Mater 4:228-36
Williams, Kevin Jon; Tabas, Ira; Fisher, Edward A (2015) How an artery heals. Circ Res 117:909-13
Hussein, Maryem A; Shrestha, Elina; Ouimet, Mireille et al. (2015) LXR-Mediated ABCA1 Expression and Function Are Modulated by High Glucose and PRMT2. PLoS One 10:e0135218
Wu, Chaowei; Hussein, Maryem A; Shrestha, Elina et al. (2015) Modulation of Macrophage Gene Expression via Liver X Receptor ? Serine 198 Phosphorylation. Mol Cell Biol 35:2024-34

Showing the most recent 10 out of 13 publications