Respiratory diseases are major causes of pediatric morbidity and mortality. These diseases are incompletely understood, which is a barrier to improving clinical care. Therefore, new mechanisms of disease need to be discovered. Optical imaging (e.g. optical coherence tomography [OCT]) will enable these discoveries since traditional imaging (e.g. x-ray, CT, MRI) cannot visualize structures smaller than ~1 mm. Microfluidic-scale cilia-driven fluid flow clears pathogen and allergen-containing mucus out of the lungs, yet we currently lack quantitative imaging technologies to characterize their flow performance. Moreover, while ciliary defects are traditionally considered a feature of rare but severe diseases (e.g. primary ciliary dyskinesia), development of biomechanical biomarkers extracted from quantitative flow imaging will allow us to test a paradigm-shifting hypothesis: intermediate defects in ciliary performance that are undetectable by current diagnostics are major modifiers of clinical severity in common respiratory diseases (e.g. asthma). Our research therefore has three aims. First, we will develop high-speed, cosine ambiguity-free Doppler OCT imaging systems. Cilia-driven fluid flow is three-dimensional in nature and not amenable to simplifying geometric assumptions such as parabolic flow profile. Traditional Doppler imaging suffers from cosine ambiguity that precludes the measurement of three-component flow velocities (v=vxi+vyj+vzk). We will develop a novel class of OCT interferometers that will enable three-dimensional, three-component flow imaging that will be demonstrated using the ciliated skin of Xenopus (tadpole) embryos, an important animal model in ciliary biology. Second, we will develop quantitative imaging assays of ciliary function that exploit cilia-driven microfluidic mixing. Taking a cue from work in biomimetic cilia, we have (a) demonstrated that ciliated biological surfaces can drive microfluidic mixing and (b) developed a novel microfluidic chip that uses a ciliated biological surface as a microfluidic """"""""component."""""""" Building on these results, we will demonstrate that our microfluidic mixing-based assay can quantify biologically relevant perturbations to ciliary physiology including increased fluid viscosity and altered planar cell polarity. Third, we will demonstrate intermediate defects in Xenopus and mouse ciliary function using quantitative imaging. We will target two different classes of genes relevant in the performance of a ciliated surface in Xenopus embryos: ciliary molecular motors and notch signaling proteins (notch signaling controls the density of ciliated cells on the embryo skin). Given the importance of mouse models of pediatric respiratory disease, it is critical to demonstrate that our optical methods can be used to quantify the performance of mouse respiratory cilia. Moreover, this is an important step towards translating our diagnostic technologies to use in humans. We propose to use flow imaging to quantify performance modified by increased fluid viscosity (mechanical perturbation to decrease ciliary beat frequency) and increased extracellular ATP (pharmacological perturbation to increase ciliary beat frequency).

Public Health Relevance

Respiratory diseases are very common in newborns and in children. These diseases are of significant public health interest because of their impact on pediatric morbidity and mortality. Our research will help us better understand the role of mucus-clearing cilia in pediatric respiratory disease and better diagnose clinically significant abnormalities in respiratory cilia.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Gan, Weiniu
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Schools of Medicine
New Haven
United States
Zip Code
Liao, Jun; Wang, Zhe; Zhang, Zibang et al. (2018) Dual light-emitting diode-based multichannel microscopy for whole-slide multiplane, multispectral and phase imaging. J Biophotonics 11:
Ling, Yuye; Yao, Xinwen; Gamm, Ute A et al. (2017) Ex vivo visualization of human ciliated epithelium and quantitative analysis of induced flow dynamics by using optical coherence tomography. Lasers Surg Med 49:270-279
Liu, Changgeng; Knitter, Sebastian; Cong, Zhilong et al. (2016) High-speed line-field confocal holographic microscope for quantitative phase imaging. Opt Express 24:9251-65
Zhou, Kevin C; Huang, Brendan K; Gamm, Ute A et al. (2016) Erratum: Particle streak velocimetry-optical coherence tomography: a novel method for multidimensional imaging of microscale fluid flows: erratum. Biomed Opt Express 7:2360-1
Zhou, Kevin C; Huang, Brendan K; Tagare, Hemant et al. (2015) Improved velocimetry in optical coherence tomography using Bayesian analysis. Biomed Opt Express 6:4796-811
Huang, Brendan K; Choma, Michael A (2015) Microscale imaging of cilia-driven fluid flow. Cell Mol Life Sci 72:1095-113
Huang, Brendan K; Gamm, Ute A; Jonas, Stephan et al. (2015) Quantitative optical coherence tomography imaging of intermediate flow defect phenotypes in ciliary physiology and pathophysiology. J Biomed Opt 20:030502
Gamm, Ute A; Huang, Brendan K; Syed, Mansoor et al. (2015) Quantifying hyperoxia-mediated damage to mammalian respiratory cilia-driven fluid flow using particle tracking velocimetry optical coherence tomography. J Biomed Opt 20:80505
Huang, Brendan K; Gamm, Ute A; Bhandari, Vineet et al. (2015) Three-dimensional, three-vector-component velocimetry of cilia-driven fluid flow using correlation-based approaches in optical coherence tomography. Biomed Opt Express 6:3515-38
Redding, Brandon; Bromberg, Yaron; Choma, Michael A et al. (2014) Full-field interferometric confocal microscopy using a VCSEL array. Opt Lett 39:4446-9

Showing the most recent 10 out of 11 publications