All present day prosthetic heart valves suffer from complications. Mechanical heart valves (HVs) require life-long anti-coagulation therapy, while bioprosthetic heart valves based on fixed tissue are plagued with durability, immunogenic and calcification issues. Polymeric heart valves promise to combine the best of the mechanical valves and the best of the bioprosthetic heart valves. Our lab has developed a novel biomaterial, BioPoly, made of engineering polymers that are, at a molecular level, interlocked with hyaluronan (HA, a naturally occurring polysaccharide) to make highly hydrophilic hemocompatible polymer leaflets with the durability of engineered synthetic polymers. Preliminary work has shown that BioPoly leaflets have remarkably reduced thrombogenic potential relative to plain polymer leaflets. Further, we have already demonstrated the feasibility of manufacturing BioPoly leaflets and assembling them into an implantable trileaflet valve. The present R01 study aims to gauge the efficacy of BioPoly as a potential alternative to current heart valve technology by fine tuning material composition and processing to meet the durability and antithrombogenic requirements for heart valve leaflets. Our central hypothesis is: BioPoly HVs offer a viable solution to the drawbacks of both bioprosthetic and mechanical HVs. This is tested in three aims.
Aim 1 quantifies heart valve hemodynamic performance and the durability/fatigue characteristics of BioPoly heart valves.
Aim 2 focuses on elucidating the effects of leaflet composition and processing on hemocompatibility.
Aim 3 focuses on understanding the in vivo hemocompatibility and calcification properties of BioPoly HV. This proposal is led by Dr. Lakshmi Prasad Dasi, who is a well-trained young investigator with expertise in heart valve engineering and cardiovascular biomechanics. Co-investigators are Dr. James, who is an established polymer materials scientist, and the inventor of BioPoly. She has successfully translated this material in orthopedic applications (currently commercially available in Europe);Dr. Popat whose expertise lies in bio-compatibility and surface nano-engineering;and Dr. Orton an experienced Veterinary cardiothoracic surgeon. If the proposed work demonstrates that BioPoly leaflet HVs are antithrombogenic, elicit excellent hemodynamics, are durable, and demonstrate resistance to in vivo calcification, this R01 grant may lead to breakthrough technology for polymeric HVs that require little or no anticoagulation, can be delivered minimally invasively and are durable enough to last a lifetime.

Public Health Relevance

The objective of this project is to develop an advanced polymeric heart valve that is engineered for maximum blood compatibility through the use of cross-linked hyaluronan, which is present in all tissues. State-of-the-art manufacturing, experimental studies in the areas of mechanics and materials sciences are utilized to construct this novel heart valve. The proposed innovative approach combines these methods and techniques to optimize a highly innovative concept in a unique interdisciplinary effort to produce durable and highly functional polymeric heart valves. This novel technology will lead to a dramatic improvement in heart valve technology.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Bioengineering, Technology and Surgical Sciences Study Section (BTSS)
Program Officer
Evans, Frank
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Colorado State University-Fort Collins
Engineering (All Types)
Biomed Engr/Col Engr/Engr Sta
Fort Collins
United States
Zip Code
Prawel, David A; Dean, Harold; Forleo, Marcio et al. (2014) Hemocompatibility and Hemodynamics of Novel Hyaluronan-Polyethylene Materials for Flexible Heart Valve Leaflets. Cardiovasc Eng Technol 5:70-81
Morshed, Khandakar Niaz; Bark Jr, David; Forleo, Marcio et al. (2014) Theory to predict shear stress on cells in turbulent blood flow. PLoS One 9:e105357
Moore, Brandon; Dasi, Lakshmi Prasad (2014) SPATIO-TEMPORAL COMPLEXITY OF THE AORTIC SINUS VORTEX. Exp Fluids 55:1770