The main goal of this research proposal is to identify the functional role of amphiregulin signaling in perioperative cardio-protection from myocardial ischemia. Transcriptional responses elicited by ischemia/hypoxia involve hypoxia inducible transcription factors (HIFs). Here, we set out to identify HIF- dependent target genes that could mediate cardio-protection. Studies in mice with conditional Hif2a deletion pointed us towards amphiregulin (AREG). Indeed, re-constitution of Hif2aloxP/loxP Myosin Cre+ mice with AREG was associated with a reversal of their phenotype and provided cardio-protection in wild-type mice. Therefore, we hypothesize that AREG production and signaling through its receptor ErbB1 conveys cardio-protection from acute ischemia. We propose to study the transcriptional control of AREG during myocardial ischemia, and test the relevance of this pathway on human disease by examining AREG transcript and protein levels in human cardiac tissues. Moreover, we will examine the functional role of AREG during myocardial ischemia in Areg-/- mice. Finally, we will study expression and function of the AREG receptor ErbB1 utilizing a mouse line with myocyte-specific deletion of ErbB1. These studies are significant for developing novel therapeutic approaches to prevent or attenuate ischemic tissue injury of the myocardium in patients undergoing major surgery.

Public Health Relevance

Our studies are designed to lay the groundwork for novel therapeutic approaches for treating surgical patients who are suffering from acute myocardial ischemia. Our studies point towards a novel therapeutic role for amphiregulin signaling through its receptor ErbB1. We believe our studies are highly significant for the treatment of patients suffering from perioperative myocardial ischemia - one of the leading causes of morbidity and mortality of surgical patients.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Program Officer
Wong, Renee P
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
Schools of Medicine
United States
Zip Code
Garcia-Morales, Luis J; Chen, Ning-Yuan; Weng, Tingting et al. (2016) Altered Hypoxic-Adenosine Axis and Metabolism in Group III Pulmonary Hypertension. Am J Respir Cell Mol Biol 54:574-83
Hoegl, Sandra; Zwissler, Bernhard; Eltzschig, Holger K et al. (2016) Acute respiratory distress syndrome following cardiovascular surgery: current concepts and novel therapeutic approaches. Curr Opin Anaesthesiol 29:94-100
Dehn, Shirley; DeBerge, Matthew; Yeap, Xin-Yi et al. (2016) HIF-2α in Resting Macrophages Tempers Mitochondrial Reactive Oxygen Species To Selectively Repress MARCO-Dependent Phagocytosis. J Immunol 197:3639-3649
Ju, Cynthia; Colgan, Sean P; Eltzschig, Holger K (2016) Hypoxia-inducible factors as molecular targets for liver diseases. J Mol Med (Berl) 94:613-27
Kiers, Harmke D; Scheffer, Gert-Jan; van der Hoeven, Johannes G et al. (2016) Immunologic Consequences of Hypoxia during Critical Illness. Anesthesiology 125:237-49
Neudecker, Viola; Brodsky, Kelley S; Kreth, Simone et al. (2016) Emerging Roles for MicroRNAs in Perioperative Medicine. Anesthesiology 124:489-506
Victorino, Francisco; Sojka, Dorothy K; Brodsky, Kelley S et al. (2015) Tissue-Resident NK Cells Mediate Ischemic Kidney Injury and Are Not Depleted by Anti-Asialo-GM1 Antibody. J Immunol 195:4973-85
Luo, Renna; Zhang, Weiru; Zhao, Cheng et al. (2015) Elevated Endothelial Hypoxia-Inducible Factor-1α Contributes to Glomerular Injury and Promotes Hypertensive Chronic Kidney Disease. Hypertension 66:75-84
Seo, Seong-wook; Koeppen, Michael; Bonney, Stephanie et al. (2015) Differential Tissue-Specific Function of Adora2b in Cardioprotection. J Immunol 195:1732-43
Aherne, C M; Saeedi, B; Collins, C B et al. (2015) Epithelial-specific A2B adenosine receptor signaling protects the colonic epithelial barrier during acute colitis. Mucosal Immunol 8:1324-38

Showing the most recent 10 out of 16 publications