Major human airway diseases are characterized by excessive airway mucus and infection so that new hypotheses for airway mucus formation and its relationship to infection are required to understand and treat this type of disease. This projet concentrates on epithelial cell production of IL-33 as a critical regulator of excess mucus production in airway disease. The focus derives from findings in both a mouse model of excess mucus production due to viral infection and in translational studies of humans with excess mucus production due to COPD. In the mouse model, parainfluenza virus (PIV) infection leads to production of IL-33 and in turn innate immune cell production of IL-13 and consequent overproduction of airway mucus, and this process is enhanced by tobacco smoking. IL-33 production is traceable to a subpopulation of epithelial cells that may be linked to cell renewal, repair, and remodeling. In humans with COPD, IL-33 production is also increased in concert with up-regulation of IL-13 and airway mucus production. In this case, increased IL-33 production is traceable to a subpopulation of basal progenitor cells that maintain an endogenous capacity for increased pluripotency and ATP-dependent release of IL-33 even ex vivo. We therefore propose that a sustainable (progenitor) epithelial cell population (particularly basal-lie cells in humans) may be activated by epithelial danger signals (particularly ATP) to release IL-33 and thereby lead to excess airway mucus production. The progenitor nature of this IL-33-expressing ATP-responsive cell population could explain an acquired susceptibility to excess mucus production. The findings may therefore provide a new paradigm to explain the role of tobacco smoking and viral infection in the excess mucus production of chronic airway disease. Our preliminary studies lead to the following specific aims: 1. In mouse models: Define the functional cell sources and targets of IL-33 that underlie excess airway mucus production in a postviral mouse model with or without tobacco smoking in vivo and establish the existence of an IL-33-producing/releasing epithelial progenitor cell population using this model and the corresponding mouse cells studied in vitro. 2. In humans: Establish the existence of an IL-33-expressing/releasing progenitor cell population linked to excess mucus production in patients with COPD at baseline and during virus-induced exacerbation in vivo (using clinical samples) and in vitro (using epithelial cells isolated from these samples). These studies will test our proposal for IL-33 expression and release from a specific epithelial progenitor population that exhibits increased capacities for self-renewal, IL-33 release, and mucous cell differentiation, and thereby contributes to a vicious cycle wherein smoking and infection lead to chronic excess mucus production.

Public Health Relevance

Chronic lower respiratory disease is a leading cause of death in the U.S. and worldwide, and much of the morbidity and mortality of this type of disease is due to mucus obstruction of the airways. Despite the scope of this problem, there are no specific and effective therapies available for excess mucus production. The proposed studies will provide a basis for controlling the excess of airway mucous cells and mucus production and thereby address a previously unmet need for treatment of a major public health problem.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL121791-01
Application #
8632665
Study Section
Lung Cellular, Molecular, and Immunobiology Study Section (LCMI)
Program Officer
Postow, Lisa
Project Start
2014-01-10
Project End
2017-12-31
Budget Start
2014-01-10
Budget End
2014-12-31
Support Year
1
Fiscal Year
2014
Total Cost
$433,732
Indirect Cost
$148,382
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Vindedal, Gry Fluge; Thoren, Anna E; Jensen, Vidar et al. (2016) Removal of aquaporin-4 from glial and ependymal membranes causes brain water accumulation. Mol Cell Neurosci 77:47-52
Lu, Qun; Yokoyama, Christine C; Williams, Jesse W et al. (2016) Homeostatic Control of Innate Lung Inflammation by Vici Syndrome Gene Epg5 and Additional Autophagy Genes Promotes Influenza Pathogenesis. Cell Host Microbe 19:102-13
Dickinson, John D; Alevy, Yael; Malvin, Nicole P et al. (2016) IL13 activates autophagy to regulate secretion in airway epithelial cells. Autophagy 12:397-409
Morales, David J; Monte, Kristen; Sun, Lulu et al. (2015) Novel mode of ISG15-mediated protection against influenza A virus and Sendai virus in mice. J Virol 89:337-49
Wu, Kangyun; Byers, Derek E; Jin, Xiaohua et al. (2015) TREM-2 promotes macrophage survival and lung disease after respiratory viral infection. J Exp Med 212:681-97
Barrow, Alexander D; Palarasah, Yaseelan; Bugatti, Mattia et al. (2015) OSCAR is a receptor for surfactant protein D that activates TNF-α release from human CCR2+ inflammatory monocytes. J Immunol 194:3317-26
Lun, Melody P; Johnson, Matthew B; Broadbelt, Kevin G et al. (2015) Spatially heterogeneous choroid plexus transcriptomes encode positional identity and contribute to regional CSF production. J Neurosci 35:4903-16
Gowdy, Kymberly M; Martinu, Tereza; Nugent, Julia L et al. (2015) Impaired CD8(+) T cell immunity after allogeneic bone marrow transplantation leads to persistent and severe respiratory viral infection. Transpl Immunol 32:51-60
Gu, Xiaoling; Karp, Philip H; Brody, Steven L et al. (2014) Chemosensory functions for pulmonary neuroendocrine cells. Am J Respir Cell Mol Biol 50:637-46
Holtzman, Michael J; Byers, Derek E; Brett, Jennifer-Alexander et al. (2014) Linking acute infection to chronic lung disease. The role of IL-33-expressing epithelial progenitor cells. Ann Am Thorac Soc 11 Suppl 5:S287-91

Showing the most recent 10 out of 15 publications