Much of our current understanding of cardiac biology and function is derived from isolated heart preparations, whole organ level imaging, in vitro model systems and/or static endpoint analyses. In order to uncover fundamental biological principles and ultimately improve the treatment of cardiac diseases, new approaches for in vivo cellular level imaging in the beating heart are needed. We have recently developed such new technology (Nature Commun 2012;3:1054) employing a unique stabilizer setup, gating algorithm and new imaging reporters. This technological advance has allowed us to quantitate the contractile cycle of single cardiomyocytes, recruitment of host cells during complex healing mechanism following infarction (Nature 2012;487:325-9;Science 2013;339, 161-6) and drug action at the single cell level (Nature Commun 2013;4:1504). The goal of this application is to advance this cutting-edge in vivo imaging technology and to apply it to quantitative measurements of pharmacological intervention in the heart. Namely, we will develop and validate cardiac response markers, synthesize and test putative cardioprotective drugs and develop quantitative algorithms for image analysis. We anticipate that the new technology will have considerable applications in expanding our understanding of cardiac biology, and ultimately clinically translatable therapeutic intervention.

Public Health Relevance

The goal of this application is to advance cutting-edge, in vivo imaging technologies to study the effects of new therapeutic drugs on the beating heart at single cell resolution. We anticipate that the new technology will have considerable applications in expanding our understanding of cardiac biology, including how the cardiomyocyte functions and interacts with the organism in vivo, and ultimately in facilitating clinically translatable therapetic intervention.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL122208-01
Application #
8667532
Study Section
Enabling Bioanalytical and Imaging Technologies Study Section (EBIT)
Program Officer
Danthi, Narasimhan
Project Start
2014-05-15
Project End
2018-04-30
Budget Start
2014-05-15
Budget End
2015-04-30
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02199
Keliher, Edmund J; Ye, Yu-Xiang; Wojtkiewicz, Gregory R et al. (2017) Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nat Commun 8:14064
Dubach, J Matthew; Kim, Eunha; Yang, Katherine et al. (2017) Quantitating drug-target engagement in single cells in vitro and in vivo. Nat Chem Biol 13:168-173
Miller, Miles A; Weissleder, Ralph (2017) Imaging of anticancer drug action in single cells. Nat Rev Cancer 17:399-414
Lee, Sungon; Courties, Gabriel; Nahrendorf, Matthias et al. (2017) Motion characterization scheme to minimize motion artifacts in intravital microscopy. J Biomed Opt 22:36005
Miller, Miles A; Weissleder, Ralph (2017) Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Adv Drug Deliv Rev 113:61-86
Dutta, Partha; Hoyer, Friedrich Felix; Sun, Yuan et al. (2016) E-Selectin Inhibition Mitigates Splenic HSC Activation and Myelopoiesis in Hypercholesterolemic Mice With Myocardial Infarction. Arterioscler Thromb Vasc Biol 36:1802-8
Sager, Hendrik B; Hulsmans, Maarten; Lavine, Kory J et al. (2016) Proliferation and Recruitment Contribute to Myocardial Macrophage Expansion in Chronic Heart Failure. Circ Res 119:853-64
Vinegoni, C; Leon Swisher, C; Fumene Feruglio, P et al. (2016) Real-time high dynamic range laser scanning microscopy. Nat Commun 7:11077
Cho, Choi-Fong; Lee, Kyungheon; Speranza, Maria-Carmela et al. (2016) Design of a Microfluidic Chip for Magnetic-Activated Sorting of One-Bead-One-Compound Libraries. ACS Comb Sci 18:271-8
Sager, Hendrik B; Dutta, Partha; Dahlman, James E et al. (2016) RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Sci Transl Med 8:342ra80

Showing the most recent 10 out of 25 publications