Clinical care and large observational studies are characterized by periods of intense health monitoring during hospital visits followed by long periods of low-intensity or no-monitoring between visits. Data obtained during in-hospital visits come from a host of new technologies, such as very densely sampled biosignal recordings (EEG, ECG, health scores) and high resolution multi-modality imaging (MRI, CT, PET). A major characteristic of this type of data is that it is collected for a period of time that is subject-spcific. Indeed, the in-hospital length and amount of monitoring varies between subjects, and is highly informative both for studying health outcomes in the hospital and after discharge. One among many examples is a recent study of subjects admitted to the Intensive Care Unit (ICU) with Acute Respiratory Distress Syndrome (ARDS). For each subject the Sequential Organ Failure Assessment (SOFA) score, a commonly- used scoring system to measure organ dysfunction in the ICU, was collected daily for each subject for the duration of their ICU stay. The ICU length of stay is different by subject and likely to be highly informative of current and future health outcomes. In this application, a set of relevant problems are conceptualized and distilled to statistical aims to address specific complexities associated with this type of data sampling. Specifically, the proposal addresses the following fundamental unsolved problems in studies that collect high density biosignals: 1) introducing statistical models for the association between high density biosignals with uneven support and health outcomes;2) developing functional registration-by-prediction models that transform the support of biosignals to provide best prediction of health outcomes;and 3) developing models for describing the cross-sectional and longitudinal variability of biosignals obtained in studies with rare -but intense- health monitorin. While focus lies on research studies that collect quasi- continuous ultra-high resolution biosignals for subject-specific lengths of time, methods will be generalizable to many other studies with similar data sampling structures. 2

Public Health Relevance

This project provides analytic methods for biological and health signals that are measured often for unequal periods of time (e.g. disease severity scores during hospital stays, EEG data during sleep, reaching hand movement after stroke). Special emphasis is given to the study of the association between these biosignals and health outcomes. 4

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Wolz, Michael
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Biostatistics & Other Math Sci
Schools of Public Health
United States
Zip Code
Urbanek, Jacek K; Spira, Adam P; Di, Junrui et al. (2017) Epidemiology of objectively measured bedtime and chronotype in US adolescents and adults: NHANES 2003-2006. Chronobiol Int :1-19
Muschelli, John; Sweeney, Elizabeth M; Ullman, Natalie L et al. (2017) PItcHPERFeCT: Primary Intracranial Hemorrhage Probability Estimation using Random Forests on CT. Neuroimage Clin 14:379-390
Goldsmith, Jeff; Schwartz, Joseph E (2017) Variable selection in the functional linear concurrent model. Stat Med 36:2237-2250
Shou, H; Cui, L; Hickie, I et al. (2017) Dysregulation of objectively assessed 24-hour motor activity patterns as a potential marker for bipolar I disorder: results of a community-based family study. Transl Psychiatry 7:e1211
Webb-Vargas, Yenny; Chen, Shaojie; Fisher, Aaron et al. (2017) Big Data and Neuroimaging. Stat Biosci 9:543-558
Varma, Vijay R; Dey, Debangan; Leroux, Andrew et al. (2017) Re-evaluating the effect of age on physical activity over the lifespan. Prev Med 101:102-108
Chén, Oliver Y; Crainiceanu, Ciprian; Ogburn, Elizabeth L et al. (2017) High-dimensional multivariate mediation with application to neuroimaging data. Biostatistics :
Reiss, Philip T; Goldsmith, Jeff; Shang, Han Lin et al. (2017) Methods for scalar-on-function regression. Int Stat Rev 85:228-249
Bai, Jiawei; Sun, Yifei; Schrack, Jennifer A et al. (2017) A two-stage model for wearable device data. Biometrics :
Wong, Aaron L; Goldsmith, Jeff; Forrence, Alexander D et al. (2017) Reaction times can reflect habits rather than computations. Elife 6:

Showing the most recent 10 out of 38 publications