Clinical care and large observational studies are characterized by periods of intense health monitoring during hospital visits followed by long periods of low-intensity or no-monitoring between visits. Data obtained during in-hospital visits come from a host of new technologies, such as very densely sampled biosignal recordings (EEG, ECG, health scores) and high resolution multi-modality imaging (MRI, CT, PET). A major characteristic of this type of data is that it is collected for a period of time that is subject-spcific. Indeed, the in-hospital length and amount of monitoring varies between subjects, and is highly informative both for studying health outcomes in the hospital and after discharge. One among many examples is a recent study of subjects admitted to the Intensive Care Unit (ICU) with Acute Respiratory Distress Syndrome (ARDS). For each subject the Sequential Organ Failure Assessment (SOFA) score, a commonly- used scoring system to measure organ dysfunction in the ICU, was collected daily for each subject for the duration of their ICU stay. The ICU length of stay is different by subject and likely to be highly informative of current and future health outcomes. In this application, a set of relevant problems are conceptualized and distilled to statistical aims to address specific complexities associated with this type of data sampling. Specifically, the proposal addresses the following fundamental unsolved problems in studies that collect high density biosignals: 1) introducing statistical models for the association between high density biosignals with uneven support and health outcomes;2) developing functional registration-by-prediction models that transform the support of biosignals to provide best prediction of health outcomes;and 3) developing models for describing the cross-sectional and longitudinal variability of biosignals obtained in studies with rare -but intense- health monitorin. While focus lies on research studies that collect quasi- continuous ultra-high resolution biosignals for subject-specific lengths of time, methods will be generalizable to many other studies with similar data sampling structures. 2

Public Health Relevance

This project provides analytic methods for biological and health signals that are measured often for unequal periods of time (e.g. disease severity scores during hospital stays, EEG data during sleep, reaching hand movement after stroke). Special emphasis is given to the study of the association between these biosignals and health outcomes. 4

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
1R01HL123407-01
Application #
8742367
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Wolz, Michael
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Biostatistics & Other Math Sci
Type
Schools of Public Health
DUNS #
City
Baltimore
State
MD
Country
United States
Zip Code
21218
StrÄ…czkiewicz, M; Urbanek, J K; Fadel, W F et al. (2016) Automatic car driving detection using raw accelerometry data. Physiol Meas 37:1757-1769
Fisher, Aaron; Caffo, Brian; Schwartz, Brian et al. (2016) Fast, Exact Bootstrap Principal Component Analysis for p > 1 million. J Am Stat Assoc 111:846-860
Qiu, Huitong; Han, Fang; Liu, Han et al. (2016) Joint Estimation of Multiple Graphical Models from High Dimensional Time Series. J R Stat Soc Series B Stat Methodol 78:487-504
Tudorascu, Dana L; Karim, Helmet T; Maronge, Jacob M et al. (2016) Reproducibility and Bias in Healthy Brain Segmentation: Comparison of Two Popular Neuroimaging Platforms. Front Neurosci 10:503
Urbanek, Jacek K; Harezlak, Jaroslaw; Glynn, Nancy W et al. (2016) Stride variability measures derived from wrist- and hip-worn accelerometers. Gait Posture 52:217-223
Sweeney, Elizabeth M; Shinohara, Russell T; Dewey, Blake E et al. (2016) Relating multi-sequence longitudinal intensity profiles and clinical covariates in incident multiple sclerosis lesions. Neuroimage Clin 10:1-17
Goldsmith, Jeff; Kitago, Tomoko (2016) Assessing systematic effects of stroke on motorcontrol by using hierarchical function-on-scalar regression. J R Stat Soc Ser C Appl Stat 65:215-236
Wrobel, Julia; Park, So Young; Staicu, Ana Maria et al. (2016) Interactive graphics for functional data analyses. Stat (Int Stat Inst) 5:108-118
Muschelli, John; Ullman, Natalie L; Mould, W Andrew et al. (2015) Validated automatic brain extraction of head CT images. Neuroimage 114:379-85
Muschelli, John; Ullman, Natalie L; Sweeney, Elizabeth M et al. (2015) Quantitative Intracerebral Hemorrhage Localization. Stroke 46:3270-3

Showing the most recent 10 out of 22 publications