The incidence of heart failure (HF) is projected to increase by 25% over the next 20 years with a projected cost of $69.7 billion representing a substantial health and economic burden on the US. In general, HF is characterized by a decrease in contractility and maladaptive ventricular remodeling ultimately leading to impaired cardiac output to the systemic circulation. Immense scientific effort has been focused on unraveling the molecular and cellular mechanisms driving decreased cardiac contractility and while a multitude of changes no doubt contribute, it is generally agreed that much of the contractile deficit is due to a reduction in cytosolic calcium (Ca2+) transients and a decrease in sarcoplasmic reticulum (SR) Ca2+ content. Similarly, recent studies have supported the theory that mitoCa2+ content is actually diminished in HF despite elevations in diastolic Ca2+. To examine the role of mitoCa2+ in the development and progression of HF we have developed mutant mouse models of a proposed mitochondrial Na+/Ca2+ exchanger (mitoNCX). The mitoCa2+ microdomain has been under intense investigation due to its significant influence on energy production and cell death and HF in particular, is characterized by both significant metabolic dysfunction and gradual cell dropout. This project is testing the central hypothesis that reducing mitoCa2+ efflux protects against gradual cell dropout and adverse remodeling in heart failure by enhancing cardiomyocyte metabolic and redox capacity. For the first time, utilizing genetic gain- and loss-of-function approaches we will characterize the biophysical properties of this novel exchanger, assess its contribution to cellular physiology and examine its role in clinically relevant animal models. The ultimate goal of this research endeavor is to define the role of mitoCa2+ signaling in the development and progression of HF and foster therapeutic application.

Public Health Relevance

This goal of this research project is to further our understanding of the cellular events that promote the development of heart failure. Specifically, we are examining how small channels within the mitochondria might regulate various signaling processes that change both how a heart cell (cardiomyocyte) dies and how it uses energy in the context of heart failure. A more developed understanding of these very important processes we hope will foster new treatments for heart disease.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Cardiac Contractility, Hypertrophy, and Failure Study Section (CCHF)
Program Officer
Krull, Holly
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Temple University
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Woodall, Benjamin P; Woodall, Meryl C; Luongo, Timothy S et al. (2016) Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy. J Biol Chem 291:21913-21924
De Simone, Francesca Isabella; Darbinian, Nune; Amini, Shohreh et al. (2016) HIV-1 Tat and Cocaine Impair Survival of Cultured Primary Neuronal Cells via a Mitochondrial Pathway. J Neuroimmune Pharmacol 11:358-68
Hoffman, Nicholas E; Miller, Barbara A; Wang, JuFang et al. (2015) Ca²⁺ entry via Trpm2 is essential for cardiac myocyte bioenergetics maintenance. Am J Physiol Heart Circ Physiol 308:H637-50
Sato, Priscila Y; Chuprun, J Kurt; Ibetti, Jessica et al. (2015) GRK2 compromises cardiomyocyte mitochondrial function by diminishing fatty acid-mediated oxygen consumption and increasing superoxide levels. J Mol Cell Cardiol 89:360-4
Shanmughapriya, Santhanam; Rajan, Sudarsan; Hoffman, Nicholas E et al. (2015) SPG7 Is an Essential and Conserved Component of the Mitochondrial Permeability Transition Pore. Mol Cell 60:47-62
Khan, Mohsin; Nickoloff, Emily; Abramova, Tatiana et al. (2015) Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res 117:52-64
Luongo, Timothy S; Lambert, Jonathan P; Yuan, Ancai et al. (2015) The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition. Cell Rep 12:23-34
Lombardi, Alyssa A; Elrod, John W (2015) mtDNA damage in the development of heart failure. Am J Physiol Heart Circ Physiol 309:H393-5
Elrod, John W; van Berlo, Jop H (2014) Unraveling the complexities of cardiac remodeling and hypertrophy - high-content screening and computational modeling. J Mol Cell Cardiol 72:360-3
Hoffman, Nicholas E; Chandramoorthy, Harish C; Shanmughapriya, Santhanam et al. (2014) SLC25A23 augments mitochondrial Ca²⁺ uptake, interacts with MCU, and induces oxidative stress-mediated cell death. Mol Biol Cell 25:936-47