Heart failure (HF) is a major cause of morbidity and mortality in the United States. While progress in conventional treatments is making steady and incremental gains, there is a critical need to explore new therapeutic approaches. Over the last five years, there has been a tremendous amount of information about microRNAs (miRs) in cardiac diseases. These small noncoding RNAs regulate protein expression by destabilization and/or translational inhibition of target messenger RNAs (mRNAs). Expression of miRs is abnormally regulated in cardiac hypertrophy and heart failure. In fact, miR expression seems to be more sensitive than mRNA to changes in clinical cardiac function. Single miRs tend to regulate numerous effectors within the same functional pathway, producing a coherent physiological response. Targeting miRs can therefore produce beneficial responses in disease states. Stable miR mimetics (agomiRs) and antagonists (antagomiRs) for specific miRs have been developed to prevent or reverse various diseases including experimental heart failure. Recently, our group found that miR25 is a key microRNA that regulates the cardiac sarcoplasmic reticulum calcium ATPase pump, SERCA2a. We showed antimiR25 treatment enhanced cardiac contractility and function through SERCA2a restoration in murine heart failure models. These early results suggest that inhibition of miR25 expression may be a promising therapeutic approach to enhance cardiac function in HF. Our overall hypothesis is that there are optimized sequences and functional structures of miR25 decoys. These decoys efficiently inhibit miR25 activity and consequently improve SERCA2a expression in cardiac myocytes of HF patients.

Public Health Relevance

Heart failure is a major cause of morbidity and mortality in the United States and there is a critical need for novel therapies. In this proposal, we will investigae the role of noncoding microRNA (miR25) in failing hearts. Modulating miR25 expression may be a promising therapeutic approach to enhance cardiac function in heart failure.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL128072-04
Application #
9462945
Study Section
Cardiac Contractility, Hypertrophy, and Failure Study Section (CCHF)
Program Officer
Schwartz, Lisa
Project Start
2015-04-15
Project End
2019-03-31
Budget Start
2018-04-01
Budget End
2019-03-31
Support Year
4
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Icahn School of Medicine at Mount Sinai
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Mayourian, Joshua; Ceholski, Delaine K; Gorski, Przemek A et al. (2018) Exosomal microRNA-21-5p Mediates Mesenchymal Stem Cell Paracrine Effects on Human Cardiac Tissue Contractility. Circ Res 122:933-944
Diez-Cuñado, Marta; Wei, Ke; Bushway, Paul J et al. (2018) miRNAs that Induce Human Cardiomyocyte Proliferation Converge on the Hippo Pathway. Cell Rep 23:2168-2174
Ceholski, Delaine K; Turnbull, Irene C; Kong, Chi-Wing et al. (2018) Functional and transcriptomic insights into pathogenesis of R9C phospholamban mutation using human induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 119:147-154
Jeong, Dongtak; Yoo, Jimeen; Lee, Philyoung et al. (2018) miR-25 Tough Decoy Enhances Cardiac Function in Heart Failure. Mol Ther 26:718-729
Poller, Wolfgang; Dimmeler, Stefanie; Heymans, Stephane et al. (2018) Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J 39:2704-2716
Hammoudi, Nadjib; Watanabe, Shin; Bikou, Olympia et al. (2018) Speckle-Tracking Echocardiographic Strain Analysis Reliably Estimates Degree of Acute LV Unloading During Mechanical LV Support by Impella. J Cardiovasc Transl Res :
Mayourian, Joshua; Ceholski, Delaine K; Gonzalez, David M et al. (2018) Physiologic, Pathologic, and Therapeutic Paracrine Modulation of Cardiac Excitation-Contraction Coupling. Circ Res 122:167-183
Molokanova, Elena; Mercola, Mark; Savchenko, Alex (2017) Bringing new dimensions to drug discovery screening: impact of cellular stimulation technologies. Drug Discov Today 22:1045-1055
McKeithan, Wesley L; Savchenko, Alex; Yu, Michael S et al. (2017) An Automated Platform for Assessment of Congenital and Drug-Induced Arrhythmia with hiPSC-Derived Cardiomyocytes. Front Physiol 8:766
Kranias, Evangelia G; Hajjar, Roger J (2017) The Phospholamban Journey 4 Decades After Setting Out for Ithaka. Circ Res 120:781-783

Showing the most recent 10 out of 32 publications