In the adult heart, cell death following myocardial infarction (MI) initiates an inflammatory reaction that removes dead cells and contributes to scar formation and cardiac repair. Since the regenerative capacity of the adult mammalian heart is limited, induction of this innate immune response could be maladaptive and compromises cardiac contractile function. In neonatal mice, the heart can regenerate fully without scarring following MI; however, this regenerative capacity is largely lost rapidly after birth. A proactive role of the immune system and its response to injury has been proposed to be a central mediator of neonatal heart regeneration. However, the exact mechanisms by which neonatal adaptive immunity modulates heart regeneration are largely unknown. We found that induction of MI in post-natal day 1 (P1) mice induced an inflammatory response that failed to activate key inflammatory serine proteases (ISPs), enzymes released upon leukocyte activation and are the primary reason for tissue damage at the sites of inflammation. In contrast, activation of ISPs was observed when MI was performed at P7 or later, a time when the regenerative capability of the heart is very low. Because activation of ISPs occurs early after myocardial injury, is an important regulator of the inflammatory response and functionally modulates a number of protein substrates that regulate cell growth and function, we hypothesize that activation of ISPs plays an active role in regulating cardiac regeneration and repair. Pilot study shows that inhibition of ISPs in vivo using mice deficient in DiPeptidyl Peptidase I (DPPI), a key enzyme necessary for the cleavage and activation of major ISPs, enhanced cardiomyocyte proliferation during post-natal development and in adult hearts subjected to MI compared to wild-type, along with an improvement in cardiac remodeling and function. Interestingly, DPPI deletion also enhanced the survival of stem cells in the infarcted area, suggesting that ISPs modulate post-MI repair by affecting not only cardiomyocyte growth and proliferation, but also by modulating stem cell survival and growth. These data support the hypothesis that activation of ISPs impairs endogenous cardiac repair and leads to cardiac dysfunction post-MI. Here, we will determine whether inhibition of ISPs enhances endogenous cardiac repair and regeneration in neonatal and adult heart after MI injury. We will also define the mechanisms by which ISPs modulate cardiac regeneration of neonatal and adult hearts. The long term goal is to develop novel strategies targeting DPPI to enhance cardiac repair after MI, for which not a single drug is currently available.

Public Health Relevance

Coronary heart disease and atherosclerosis account for roughly two-thirds of all deaths from heart disease through additive micro-ischemic episodes or through acute myocardial infarction (MI). Because of the importance of inflammation and reparative mechanisms on cardiac remodeling, defects in inflammatory pathways may be responsible for adverse remodeling and heart failure in a large number of patients surviving a MI. Several advances in the treatment of patients with either longstanding heart failure or acute MI have improved survival. However, this disease process is still pre-eminent in affecting the morbidity and mortality of patients with chronic heart disease. The goal of this project is to explore the mechanisms of action of inflammatory serine proteases in infarcted heart and to use our understanding of inflammatory serine protease signaling to uncover new disease mechanisms and therapeutic approaches to reduce myocyte loss, enhance cardiac regeneration and replace myocardial tissue after MI in humans.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL128446-01
Application #
8942231
Study Section
Myocardial Ischemia and Metabolism Study Section (MIM)
Program Officer
Schwartz, Lisa
Project Start
2015-08-01
Project End
2019-03-31
Budget Start
2015-08-01
Budget End
2016-03-31
Support Year
1
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Temple University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
057123192
City
Philadelphia
State
PA
Country
United States
Zip Code
19122
Michael, James V; Wurtzel, Jeremy G T; Mao, Guang Fen et al. (2017) Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth. Blood 130:567-580
Kolpakov, Mikhail A; Tilley, Douglas G; Sabri, Abdelkarim (2017) G?q Signaling in the Regulation of Autophagy and Heart Failure. J Cardiovasc Pharmacol 69:212-214
Smith, Shavonn C; Zhang, Xiaoxiao; Zhang, Xiaoying et al. (2015) GDF11 does not rescue aging-related pathological hypertrophy. Circ Res 117:926-32
Mann, Sarah; Bajulaiye, Akinyemi; Sturgeon, Kathleen et al. (2015) Effects of acute angiotensin II on ischemia reperfusion injury following myocardial infarction. J Renin Angiotensin Aldosterone Syst 16:13-22
Woitek, Felix; Zentilin, Lorena; Hoffman, Nicholas E et al. (2015) Intracoronary Cytoprotective Gene Therapy: A Study of VEGF-B167 in a Pre-Clinical Animal Model of Dilated Cardiomyopathy. J Am Coll Cardiol 66:139-53