It is widely recognized that pathological hypertrophy of the heart is associated with decreased fatty acid oxidation (FAO) and increased reliance on glucose utilization. Intensive research in the past decade has investigated whether the shift of substrate preference towards glucose is adaptive or maladaptive for the high energy demand of the heart. Evidence from these studies suggest that sustaining a high capacity for ATP synthesis via oxidative metabolism rather than the selection of substrates is critical for maintaining the energy supply to the heart during chronic stress. Prior studies by us and others have shown that increasing the oxidation of either glucose or fatty acids improves myocardial energetics and systolic function in chronically stress hearts. We thus ask whether decreased FAO affects mechanisms of heart failure beyond that for ATP production. It has been shown that decreased fatty acid oxidation in pathological hypertrophy is associated with decreased endogenous triglyceride turnover and accumulation of diglyceride and ceramide; in obesity animal models, cell death and pathological hypertrophy are also attributed to a mismatch of fatty acids uptake and oxidation which results in mitochondrial dysfunction, increased ROS and ER stress. In a recent study we sought to increase FAO by targeting the entry of long-chain fatty acids into the mitochondria via mCPT-1, the rate-limiting step. This was achieved by the deletion of acetyl-CoA carboxylase 2 (ACC2) which catalyze the formation of malonyl-CoA, an inhibitor of mCPT-1. Cardiac-specific deletion of ACC2 in mice (cKO) resulted in a 50% increase of FAO without affecting survival or cardiac function in the long term. Furthermore, it maintained normal metabolic profile and protected against the development of pathological hypertrophy and cardiac dysfunction during chronic pressure overload (TAC). Notably, the benefit in cKO is not limited to improved ATP supply from FAO as the cKO markedly decreased cardiac hypertrophy after TAC while increasing glucose uptake and utilization by overexpressing GLUT1 improved cardiac energetics and function but did not reduce hypertrophy. These observations have led us to hypothesize that sustaining fatty acid oxidation in the heart protects against the development of pathological hypertrophy during chronic stress. To address the question whether the above observations were due to the adaptive responses triggered by the deficiency of ACC2 at birth in the cKO we developed a mouse model with inducible deletion of ACC2 (iKO) in the heart. This model will also allow us to determine whether increasing FAO can arrest or regress existing pathological hypertrophy. Our preliminary data show that deletion of ACC2 in the adult mouse heart results in a similar increase of FAO as observed in cKO, and it suppressed the development of pathological hypertrophy by either angiotensin II (AngII) or diet-induced obesity. Therefore, our goal in the proposed studies are 1) to determine the mechanisms by which sustaining myocardial FAO protects against cardiac hypertrophy; 2) to test whether upregulating FAO can reverse the pathological remodeling and failure of the heart.

Public Health Relevance

The hypertrophied and failing heart displays decreased fatty acid oxidation and increased reliance on glucose utilization. The proposed study seeks to determine the pathogenic mechanisms of impaired fatty acid oxidation and to test whether normalizing cardiac fatty acid oxidation arrests or reverses the pathological hypertrophy.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL129510-02
Application #
9100917
Study Section
Myocardial Ischemia and Metabolism Study Section (MIM)
Program Officer
Wong, Renee P
Project Start
2015-07-01
Project End
2019-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
2
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Washington
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Roe, Nathan D; Handzlik, Michal K; Li, Tao et al. (2018) The Role of Diacylglycerol Acyltransferase (DGAT) 1 and 2 in Cardiac Metabolism and Function. Sci Rep 8:4983
Shao, Dan; Villet, Outi; Zhang, Zhen et al. (2018) Glucose promotes cell growth by suppressing branched-chain amino acid degradation. Nat Commun 9:2935
Walker, Matthew A; Tian, Rong (2018) Raising NAD in Heart Failure: Time to Translate? Circulation 137:2274-2277
Lee, Chi Fung; Cao, Yang; Tian, Rong (2018) Failed Power Plant Turns Into Mass Murder: New Insight on Mitochondrial Cardiomyopathy. Circ Res 122:11-13
Cao, Yang; Bojjireddy, Naveen; Kim, Maengjo et al. (2017) Activation of ?2-AMPK Suppresses Ribosome Biogenesis and Protects Against Myocardial Ischemia/Reperfusion Injury. Circ Res 121:1182-1191
Ritterhoff, Julia; Tian, Rong (2017) Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res 113:411-421
Nguyen, Son; Shao, Dan; Tomasi, Loreta C et al. (2017) The effects of fatty acid composition on cardiac hypertrophy and function in mouse models of diet-induced obesity. J Nutr Biochem 46:137-142
Li, Tao; Zhang, Zhen; Kolwicz Jr, Stephen C et al. (2017) Defective Branched-Chain Amino Acid Catabolism Disrupts Glucose Metabolism and Sensitizes the Heart to Ischemia-Reperfusion Injury. Cell Metab 25:374-385
Wang, Wang; Karamanlidis, Georgios; Tian, Rong (2016) Novel targets for mitochondrial medicine. Sci Transl Med 8:326rv3
Roe, Nathan D; Standage, Stephen W; Tian, Rong (2016) The Relationship Between KLF5 and PPAR? in the Heart: It's Complicated. Circ Res 118:193-5

Showing the most recent 10 out of 13 publications