Various neuromuscular diseases result in impaired cough (dystussia). Disorders of these airway protective behaviors increase pulmonary infection due to aspiration, the leading cause of death in neuromuscular disease. Mortality rates of aspiration pneumonia - present in over half of long-term care residents - can approach 40%. Defense of the airway is achieved through coordination of multiple protective behaviors by brain circuits that remain incompletely understood. A contemporary data-driven computational model incorporating the brainstem network for breathing can rapidly reconfigure to produce the three phases a cough motor pattern: inspiration, compression, and expulsion. However, critical elements of airway protection cannot be explained. Based on motivating preliminary data and network simulations, we propose that a circuit in the nucleus of the solitary tract (NTS) and dorsal medulla regulates phase timing and respiratory muscle drive during paroxysmal coughs and exerts a command function over the brainstem respiratory control system to coordinate coughing and breathing. The project has 3 Specific Aims: (1) Determine dynamic behavior- dependent organization of NTS circuits during the expression of airway protective behaviors. (2) Determine functional connectivity between NTS and VRC neurons during expression of coughing. (3) Reconstruct our respiratory system model to incorporate regulation of both airway protective reflexes and breathing. Our unique approach, building upon experimental interrogation of the NTS region, incorporates multi-array recording technologies in an animal model system that generates defensive behaviors in response to physiologically relevant airway perturbations. We anticipate that the project will lead to: a) a new, predictive model of airway protection will be produced, b) we will understand functional relationships between conditionally active cells and t-E NTS neurons in producing cough, and c) we will identify critical NTS to parafacial/VRC functional relationships that regulate cough and breathing. This new knowledge will provide a critical step in understanding the neurogenesis of cough and how this behavior is controlled to protect the airway.

Public Health Relevance

A variety of neuromuscular diseases result in impaired cough (dystussia) and/or impaired swallow function (dysphagia). Impairment of these airway protective behaviors results in an increase in pulmonary infections due to aspiration. Pulmonary complications related to inadequate airway defense are the leading cause of death in patients with neurological diseases.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Respiratory Integrative Biology and Translational Research Study Section (RIBT)
Program Officer
Laposky, Aaron D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Florida
Schools of Veterinary Medicine
United States
Zip Code
Chang, Anne B; Oppenheimer, John J; Weinberger, Miles et al. (2017) Etiologies of Chronic Cough in Pediatric Cohorts: CHEST Guideline and Expert Panel Report. Chest 152:607-617
Rosen, Mark J; Ireland, Belinda; Narasimhan, Mangala et al. (2017) Cough in Ambulatory Immunocompromised Adults: CHEST Expert Panel Report. Chest 152:1038-1042
Malesker, Mark A; Callahan-Lyon, Priscilla; Ireland, Belinda et al. (2017) Pharmacologic and Nonpharmacologic Treatment for Acute Cough Associated With the Common Cold: CHEST Expert Panel Report. Chest 152:1021-1037
Poliacek, Ivan; Pitts, Teresa; Rose, Melanie J et al. (2017) Microinjection of kynurenic acid in the rostral nucleus of the tractus solitarius disrupts spatiotemporal aspects of mechanically induced tracheobronchial cough. J Neurophysiol 117:2179-2187
Molassiotis, Alex; Smith, Jaclyn A; Mazzone, Peter et al. (2017) Symptomatic Treatment of Cough Among Adult Patients With Lung Cancer: CHEST Guideline and Expert Panel Report. Chest 151:861-874
Poliacek, Ivan; Simera, Michal; Veternik, Marcel et al. (2017) Role of the dorsomedial medulla in suppression of cough by codeine in cats. Respir Physiol Neurobiol 246:59-66
Nair, Jayakrishnan; Streeter, Kristi A; Turner, Sara M F et al. (2017) Anatomy and physiology of phrenic afferent neurons. J Neurophysiol 118:2975-2990
Boulet, Louis-Philippe; Turmel, Julie; Irwin, Richard S et al. (2017) Cough in the Athlete: CHEST Guideline and Expert Panel Report. Chest 151:441-454