Comprehensive clinical information from a broad set of data sources is required for many healthcare tasks, including comparative effectiveness research, improving clinical care processes, and improving overall population health. Health information exchanges (HIEs) are an emerging source of healthcare data aggregation and comprehensive clinical data for these purposes. It is well-known that traditional clinical care processes underreport population level disease burden for a variety of reasons: reporters are overburdened or under resourced and they lack knowledge and/or willingness;and clinical data is scattered across different systems in different formats, which makes completing reports burdensome. Incomplete reporting can lead to inaccurate assessment of the disease burden in a community, which further hinders population health interventions and only partially informs preventive care delivered to individual patients. Our long-term goal is to improve population health through innovative informatics strategies that seamlessly integrate and effectively use practice-based population health tools in clinical care. The objective in this project is to improve the effectiveness of acute and preventative care processes by improving information sharing and data quality among healthcare providers and population health stakeholders using novel decision support tools. These tools will deliver reminders to clinical providers using pre-populated reportable condition forms that contain patient demographics and pertinent case management information. Further, this research will investigate the process and effects of deploying a framework to integrate HIE data captured from present and previous clinical encounters to improve the identification and reporting of conditions of population health significance. The central hypothesis of this proposal is that automated data capture and information enhancements will streamline provider-based population health reporting workflows, lower barriers to reporting and case follow-up, increase data completeness, capture a greater portion of communicable disease burden in the community, and improve population health. While this project focuses on the impact of novel population health decision support technology, the framework is applicable to a variety of use-cases. Thus, findings from this project will inform future large-scale clinical decision support initiatives in heterogeneous technical settings. We propose to employ both quantitative and qualitative research methods to determine the data elements and data characteristics vital for clinician case reporting, public health consumption of these reports and bidirectional transmission of case reporting information among population health stakeholders.

Public Health Relevance

The objective of this proposal is to improve the effectiveness of acute and preventative care processes by streamlining information sharing and enhancing information quality among healthcare providers and population health stakeholders using novel decision support and clinical messaging tools. The central hypothesis of this proposal is that automated data capture and provider alerts will improve time-to-treatment, simplify provider-based population health reporting workflows, and result in a more accurate assessment of population-based disease burden.

Agency
National Institute of Health (NIH)
Institute
Agency for Healthcare Research and Quality (AHRQ)
Type
Research Project (R01)
Project #
5R01HS020909-03
Application #
8533932
Study Section
Health Care Technology and Decision Science (HTDS)
Program Officer
Chaney, Kevin J
Project Start
2011-09-30
Project End
2016-09-29
Budget Start
2013-09-30
Budget End
2014-09-29
Support Year
3
Fiscal Year
2013
Total Cost
Indirect Cost
Name
Indiana University-Purdue University at Indianapolis
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
603007902
City
Indianapolis
State
IN
Country
United States
Zip Code
46202
Dixon, Brian E; Gibson, P Joseph; Grannis, Shaun J (2014) Estimating increased electronic laboratory reporting volumes for meaningful use: ?implications for the public health workforce. Online J Public Health Inform 5:225
Dixon, Brian E; Vreeman, Daniel J; Grannis, Shaun J (2014) The long road to semantic interoperability in support of public health: experiences from two states. J Biomed Inform 49:3-8
Dixon, Brian E; Gamache, Roland E; Grannis, Shaun J (2013) Towards public health decision support: a systematic review of bidirectional communication approaches. J Am Med Inform Assoc 20:577-83