High-resolution image analysis of digitized pathology slides coupled with molecular data has enormous potential to provide additional information for stratifying patients in terms of prognosis and therapy. We propose to develop methods, analytic pipelines, and data management tools that will make it feasible to systematically carry out large-scale comparative analyses of brain tumor histological features and of patterns of protein and gene expression. We will develop information models to manage information associated with analysis of brain tumor whole virtual slide data. These models will capture information about context relating to patient data, specimen preparation, and special stains, human observations involving histological classification and characteristics, algorithmic composition, parameterization and input data corresponding to analysis pipelines, and algorithm and human-described segmentations, features, and classifications. We will implement middleware for high-performance database and query support for queries that selects subsets of image data and results based on metadata on images and provenance information;that compare features, spatial structures, and classifications obtained from multiple algorithms as well as human markups;and that compare statistical and summary information on features and classifications across multiple image datasets. Using the information models and middleware, we will carry out analysis studies needed to determine the relationship between image analysis derived tumor information and clinical outcome, gene expression category, genetic gains and losses, and methylation status. We will employ a novel automated multiplex quantum dot immunohistochemistry with peptide controls and quantitative image analysis methodology to map the activity of signal transduction pathways and transcriptional networks relative to the tumor microenvironment using histology feature descriptions. We will leverage multivariate data fusion techniques to simultaneously take into account potential correlations and relationships among the measured image features, molecular signatures to predict patient outcomes. We will deploy a data repository populated with images, features, analysis pipelines, provenance information, and analytic results from our project. This repository will provide a publicly available resource for brain tumor research. All software and information models developed in this project will be open source and free for research use.

Public Health Relevance

High-resolution image analysis of digitized pathology slides coupled with molecular data has enormous potential to provide additional information for stratifying patients in terms of prognosis and therapy. We propose to develop methods, analytic pipelines, and data management tools that will make it feasible to systematically carry out large-scale comparative analyses of brain tumor histological features and of patterns of protein and gene expression. We will deploy a data repository populated with images, features, and analytic results from our project that will provide a publicly available resource for brain tumor research.

Agency
National Institute of Health (NIH)
Institute
National Library of Medicine (NLM)
Type
Research Project (R01)
Project #
1R01LM011119-01
Application #
8163751
Study Section
Special Emphasis Panel (ZLM1-ZH-C (01))
Program Officer
Ye, Jane
Project Start
2011-07-01
Project End
2015-05-31
Budget Start
2011-07-01
Budget End
2012-05-31
Support Year
1
Fiscal Year
2011
Total Cost
$496,412
Indirect Cost
Name
Emory University
Department
Pathology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Barreiros Jr, Willian; Teodoro, George; Kurc, Tahsin et al. (2017) Parallel and Efficient Sensitivity Analysis of Microscopy Image Segmentation Workflows in Hybrid Systems. Proc IEEE Int Conf Clust Comput 2017:25-35
Olafsson, Sigurast; Whittington, Dale; Murray, Jason et al. (2017) Fast and sensitive HPLC-MS/MS method for direct quantification of intracellular deoxyribonucleoside triphosphates from tissue and cells. J Chromatogr B Analyt Technol Biomed Life Sci 1068-1069:90-97
Teodoro, George; Kurç, Tahsin M; Taveira, Luís F R et al. (2017) Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines. Bioinformatics 33:1064-1072
Penha, Emanuel Diego S; Iriabho, Egiebade; Dussaq, Alex et al. (2017) Isomorphic semantic mapping of variant call format (VCF2RDF). Bioinformatics 33:547-548
Yildirim, Esma; Foran, David J (2017) Parallel Versus Distributed Data Access for Gigapixel-Resolution Histology Images: Challenges and Opportunities. IEEE J Biomed Health Inform 21:1049-1057
Teodoro, George; Kurc, Tahsin; Andrade, Guilherme et al. (2017) Application Performance Analysis and Efficient Execution on Systems with multi-core CPUs, GPUs and MICs: A Case Study with Microscopy Image Analysis. Int J High Perform Comput Appl 31:32-51
Gao, Yi; Ratner, Vadim; Zhu, Liangjia et al. (2016) Hierarchical nucleus segmentation in digital pathology images. Proc SPIE Int Soc Opt Eng 9791:
Gao, Yi; Liu, William; Arjun, Shipra et al. (2016) Multi-scale learning based segmentation of glands in digital colonrectal pathology images. Proc SPIE Int Soc Opt Eng 9791:
Hou, Le; Samaras, Dimitris; Kurc, Tahsin M et al. (2016) Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2016:2424-2433
Boregowda, Rajeev K; Medina, Daniel J; Markert, Elke et al. (2016) The transcription factor RUNX2 regulates receptor tyrosine kinase expression in melanoma. Oncotarget 7:29689-707

Showing the most recent 10 out of 63 publications