A recent convergence of findings in humans and animals indicates that our capacity for episodic memory relies on a system of cortical areas and the hippocampus that encode events in the context in which they occur. To understand the information processing mechanisms that underlie episodic memory, we are pursuing a systems analysis that will compare the nature of information processing and identify functional interactions between cortical and hippocampal areas. In this phase of funding we will focus on the lateral entorhinal cortex (LEC), testing the hypothesis that this area is a critical convergenc site for object and context representation: (1) We will distinguish LEC neural activity with regard to object and context processing and examine whether the nature of this processing has a functional topography. (2) We will characterize interactions between the LEC and interconnected cortical and hippocampal areas, testing the hypothesis that functional interactions develop during the course of learning. (3) We will test whether object and context processing in LEC depend on specific inputs from interconnected cortical and hippocampal areas. Our approach combines a behavioral paradigm for associating events and context, multi-site recording that allows us to identify single neuron and ensemble representation and synchronized activity in multiple areas, and multiple methods of reversible inactivation that identify key interactions between areas. The combined information gained from this systems analysis will improve our model of the functional organization of the cortical-hippocampal system and increase our understanding of how episodic memories are stored and retrieved within this system.

Public Health Relevance

Our understanding of cognitive disorders and the eventual development of treatments depends crucially upon an understanding of the cognitive and neural mechanisms that underlie normal cognition;for example, abnormal thought patterns in schizophrenia as well as other cognitive disorders reflect an underlying disorganization of the neural machinery that stores and retrieves memories to compose our knowledge of the world. The proposed work will pioneer a new understanding about how memories are represented in neural circuitry and about how neural representations guide cognition in daily life. Because the hippocampus and adjacent cortical areas are compromised in multiple major mental disorders, an understanding of the functional circuitry of these areas is particularly important.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Research Project (R01)
Project #
Application #
Study Section
Neurobiology of Learning and Memory Study Section (LAM)
Program Officer
Osborn, Bettina D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Boston University
Schools of Arts and Sciences
United States
Zip Code
Rueckemann, Jon W; DiMauro, Audrey J; Rangel, Lara M et al. (2016) Transient optogenetic inactivation of the medial entorhinal cortex biases the active population of hippocampal neurons. Hippocampus 26:246-60
Place, Ryan; Farovik, Anja; Brockmann, Marco et al. (2016) Bidirectional prefrontal-hippocampal interactions support context-guided memory. Nat Neurosci 19:992-4
Keene, Christopher S; Bladon, John; McKenzie, Sam et al. (2016) Complementary Functional Organization of Neuronal Activity Patterns in the Perirhinal, Lateral Entorhinal, and Medial Entorhinal Cortices. J Neurosci 36:3660-75
Eichenbaum, Howard (2016) Still searching for the engram. Learn Behav 44:209-22
McKenzie, Sam; Keene, Christopher S; Farovik, Anja et al. (2016) Representation of memories in the cortical-hippocampal system: Results from the application of population similarity analyses. Neurobiol Learn Mem 134 Pt A:178-91
Prerau, Michael J; Lipton, Paul A; Eichenbaum, Howard B et al. (2014) Characterizing context-dependent differential firing activity in the hippocampus and entorhinal cortex. Hippocampus 24:476-92
Rangel, L M; Eichenbaum, H (2014) Brain rhythms: towards a coherent picture of ensemble development in learning. Curr Biol 24:R620-1
McKenzie, Sam; Frank, Andrea J; Kinsky, Nathaniel R et al. (2014) Hippocampal representation of related and opposing memories develop within distinct, hierarchically organized neural schemas. Neuron 83:202-15
Eichenbaum, Howard; Cohen, Neal J (2014) Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron 83:764-70
Eichenbaum, Howard (2014) Remember that? Or does it just seem familiar? A sophisticated test for assessing memory in humans and animals reveals a specific cognitive impairment following general anesthesia in infancy. Neuropsychopharmacology 39:2273-4

Showing the most recent 10 out of 39 publications