Many psychiatric illnesses lead to alterations in mood, perception and memory. How activity in the brain leads to accurate perception and memory recall is a critical basic question in neuroscience that has been difficult to address directly. In this grant we develop an approach in mice that allows the genetic alteration of neurons based on their activity in response to a natural environmental stimulus or learning paradigm. We use this to introduce either the hM3Dq DREADD receptor or a variant of channelrhodopsin (ChEF) to allow the electrical stimulation of the labeled neurons either chemically or with light. In this way we can directly stimulate the ensemble of neurons activated naturally in response to a stimulus in the behaving animal to investigate the parameters required to produce a perception or memory. In preliminary studies we show that anatomically dispersed, and internally generated neural activity can be integrated into new memory. This is consistent with the idea that new memory does not form de novo but integrates with pre-existing schemas or relevant internal representations that may be active at the time of learning. Using ChEF we found that light stimulation of neurons in the retrosplenial cortex that were activated naturally with fear conditioning could produce a freezing response. This suggests that we are directly recruiting a component of the memory trace through the artificial stimulation of the correct pattern of neurons. We will extend these studies to investigate the parameters that control the integration of neural activity into new and existing memories during consolidation and reconsolidation. In addition, we will use local stimulation to directly test the optimal conditions (number of neurons, firing frequency) required for recruiting memory recall. These studies will provide the first direct test of the role of spatial and temporal patterns of neural activity in th generation of perceptions and memories. The data generated should advance our understanding of psychiatric disorders and aid in the creation of animal models in which to test treatments.

Public Health Relevance

This grant addresses the fundamental question of how the activity of nerve cells in the brain lead to the perception of the world and memory of past experience. Many psychiatric illnesses are characterized by a disruption of these functions. The information we get from these studies would help in our understanding of these disorders and in creating new animal models in which to test treatments.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH057368-16
Application #
8610354
Study Section
Special Emphasis Panel (ZRG1-IFCN-C (02))
Program Officer
Osborn, Bettina D
Project Start
2013-02-01
Project End
2018-01-31
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
16
Fiscal Year
2014
Total Cost
$810,113
Indirect Cost
$382,613
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Cowansage, Kiriana K; Shuman, Tristan; Dillingham, Blythe C et al. (2014) Direct reactivation of a coherent neocortical memory of context. Neuron 84:432-41
Mayford, Mark (2014) The search for a hippocampal engram. Philos Trans R Soc Lond B Biol Sci 369:20130161
Sanders, Jeff; Mayford, Mark; Jeste, Dilip (2013) Empathic fear responses in mice are triggered by recognition of a shared experience. PLoS One 8:e74609
Garner, Aleena R; Rowland, David C; Hwang, Sang Youl et al. (2012) Generation of a synthetic memory trace. Science 335:1513-6
Bibb, James A; Mayford, Mark R; Tsien, Joe Z et al. (2010) Cognition enhancement strategies. J Neurosci 30:14987-92
Matsuo, Naoki; Reijmers, Leon; Mayford, Mark (2008) Spine-type-specific recruitment of newly synthesized AMPA receptors with learning. Science 319:1104-7
Wiltgen, Brian J; Law, Matthew; Ostlund, Sean et al. (2007) The influence of Pavlovian cues on instrumental performance is mediated by CaMKII activity in the striatum. Eur J Neurosci 25:2491-7
Colvis, Christine M; Pollock, Jonathan D; Goodman, Richard H et al. (2005) Epigenetic mechanisms and gene networks in the nervous system. J Neurosci 25:10379-89
Limback-Stokin, Klara; Korzus, Edward; Nagaoka-Yasuda, Rie et al. (2004) Nuclear calcium/calmodulin regulates memory consolidation. J Neurosci 24:10858-67