Mood-related disorders such as anxiety and depression are linked to dysfunction in many brain structures, including the hippocampus. Many effective and promising new drugs for the treatment of mood-related disorders target, directly or indirectly, G protein-coupled receptors (GPCRs) that modulate the activity of multiple effectors. The relative significance of specific GPCR-effector interactions to normal and pathological mood-related behaviors, and pertinent anatomic loci, are unclear. The premise of this proposal is that a better understanding of GPCR-effector interactions, obtained with an interdisciplinary approach spanning molecular, ultrastructural, electrophysiological, and behavioral levels of analysis, will ultimately improve how we understand and treat mental disorders with strong affective components. The focus of this study is the G protein-gated inwardly-rectifying K+ (Girk/KIR3) channel, which mediates the postsynaptic inhibitory effect of many neurotransmitters - including several linked mood-related behavior such as GABA, serotonin, and adenosine - that influence neuronal excitability via activation of GPCRs. Recent studies have identified new modes of Girk regulation and a striking GPCR-dependent compartmentalization of Girk signaling in the hippocampus. The goal of the proposed research is to build on this foundation by pursuing factors influencing the strength and sensitivity of GPCR-Girk signaling, mechanisms underlying the GPCR-dependent compartmentalization of Girk signaling in the hippocampus, and the contributions made by hippocampal GPCR-Girk signaling to mood-related behavior and cognition. Effort will be centered on three inter-related Specific Aims: (1) To understand the Girk1-dependent potentiation of GPCR-Girk signaling. Structural insights into the positive contribution made by the Girk1 subunit to GPCR-Girk signaling will be pursued, and the hypothesis that Girk1 strengthens the physical interaction between receptor and channel will be tested. (2) To identify factors underlying the GPCR-dependent compartmentalization of Girk signaling. The hypothesis that the molecular composition and subcellular distribution of hippocampal Girk signaling differs in a GPCR- dependent manner will be tested. (3) To measure the impact of hippocampal GPCR-Girk signaling on mood and cognition. Mood-related behavior and cognition will be measured in constitutive knockout mice exhibiting diminished or enhanced GPCR signaling, and in mice following pharmacologic and/or genetic manipulation of Girk signaling in the hippocampus. The molecular, subcellular, and behavioral insights gleaned from these studies will enhance our understanding of neuronal GPCR-Girk signaling, while offering new insights into the molecular and anatomic basis of mood-related behavior and cognition. Accordingly, the proposed research aligns with several high-priority research areas at the National Institute of Mental Health and constitutes a necessary step toward a more comprehensive understanding of, and more effective treatments for, mood- related disorders.

Public Health Relevance

Anxiety disorders and depression are linked to dysfunction in brain regions involved with emotion. Many effective and promising new treatments for such disorders target proteins on the surface of neurons (receptors), which control the activity of many proteins inside the neurons (effectors), in these brain regions. The proposed research will shed new light on receptor-effector interactions in pertinent brain regions that shape anxiety-related behavior, paving the way toward a more comprehensive understanding of, and improved treatments for, mood-related disorders.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Research Project (R01)
Project #
Application #
Study Section
Neurotransporters, Receptors, and Calcium Signaling Study Section (NTRC)
Program Officer
Asanuma, Chiiko
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Minnesota Twin Cities
Schools of Medicine
United States
Zip Code
Lujan, Rafael; Marron Fernandez de Velasco, Ezequiel; Aguado, Carolina et al. (2014) New insights into the therapeutic potential of Girk channels. Trends Neurosci 37:20-9
Wydeven, Nicole; Posokhova, Ekaterina; Xia, Zhilian et al. (2014) RGS6, but not RGS4, is the dominant regulator of G protein signaling (RGS) modulator of the parasympathetic regulation of mouse heart rate. J Biol Chem 289:2440-9
Ostrovskaya, Olga; Xie, Keqiang; Masuho, Ikuo et al. (2014) RGS7/G?5/R7BP complex regulates synaptic plasticity and memory by modulating hippocampal GABABR-GIRK signaling. Elife 3:e02053
Krogh, Kelly A; Wydeven, Nicole; Wickman, Kevin et al. (2014) HIV-1 protein Tat produces biphasic changes in NMDA-evoked increases in intracellular Ca2+ concentration via activation of Src kinase and nitric oxide signaling pathways. J Neurochem 130:642-56
Wydeven, Nicole; Marron Fernandez de Velasco, Ezequiel; Du, Yu et al. (2014) Mechanisms underlying the activation of G-protein-gated inwardly rectifying K+ (GIRK) channels by the novel anxiolytic drug, ML297. Proc Natl Acad Sci U S A 111:10755-60
Hearing, Matthew; Kotecki, Lydia; Marron Fernandez de Velasco, Ezequiel et al. (2013) Repeated cocaine weakens GABA(B)-Girk signaling in layer 5/6 pyramidal neurons in the prelimbic cortex. Neuron 80:159-70
Booker, Sam A; Gross, Anna; Althof, Daniel et al. (2013) Differential GABAB-receptor-mediated effects in perisomatic- and dendrite-targeting parvalbumin interneurons. J Neurosci 33:7961-74
Fernandez-Alacid, Laura; Watanabe, Masahiko; Molnar, Elek et al. (2011) Developmental regulation of G protein-gated inwardly-rectifying K+ (GIRK/Kir3) channel subunits in the brain. Eur J Neurosci 34:1724-36
Mirkovic, K; Wickman, K (2011) Identification and characterization of alternative splice variants of the mouse Trek2/Kcnk10 gene. Neuroscience 194:11-8
Arora, Devinder; Hearing, Matthew; Haluk, Desirae M et al. (2011) Acute cocaine exposure weakens GABA(B) receptor-dependent G-protein-gated inwardly rectifying K+ signaling in dopamine neurons of the ventral tegmental area. J Neurosci 31:12251-7

Showing the most recent 10 out of 36 publications