Structural abnormalities of the amygdala/hippocampal complex are a consistent finding in schizophrenia. In animal models, neonatal damage to the amygdala/hippocampal complex results in adult onset dopamine (DA) dysregulation, another key feature of this illness. Maintaining the integrity of amygdala/hippocampal circuits therefore appears critical to later DA function. We have previously shown that the extended amygdala, a major output region of the amygala and other temporal lobe structures, has broad inputs to the dopamine neurons. This pathway is thus a potential route by which amygdala-hippocampal abnormalities may eventually lead to DA dysregulation. The proposed studies will examine how the amygdala and hippocampus can influence the midbrain DA system through the extended amygdala. The fact that temporal lobe injury results in DA dysregulation only later in development suggests that plastic changes eventually influence DA output. Our preliminary results show that B lymphocyte 2 protein (bcl-2), which protects cells from excitotoxic damage and also has neurotrophic effects, is highly concentrated in specific subregions of the adult primate temporal lobe. Our preliminary results show high concentrations of Bcl-2 positive cells in the extended amygdala, and in subregions of the amygdala and hippocampus associated with schizophrenia. The presence of bcl-2 in specific circuits may help to identify excitatory pathways most susceptible to plastic changes and/or excitotoxic stress in adult animals. The proposed studies will identify temporal lobe circuits that influence DA through the extended amygdala. Specifically we will: 1) identify direct amygdaloid and hippocampal inputs to the extended amygdala-DA pathway, 2) identify indirect hippocampal pathways through the amygdala that influence the extended amygdala, 3) determine whether specific amygdaloid and hippocampal input/output paths contain Bcl-2 immunoreactive cells, 4) determine the extent to which hippocampal inputs overlap amygdala subregions that project to the extended amygdala, and the extent to which this input overlaps inhibitory interneurons and bcl-2-containing cells.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH063291-06
Application #
7260440
Study Section
Neural Basis of Psychopathology, Addictions and Sleep Disorders Study Section (NPAS)
Program Officer
Vicentic, Aleksandra
Project Start
2001-04-01
Project End
2009-07-31
Budget Start
2007-08-01
Budget End
2009-07-31
Support Year
6
Fiscal Year
2007
Total Cost
$266,250
Indirect Cost
Name
University of Rochester
Department
Psychiatry
Type
Schools of Dentistry
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Kelly, E A; Fudge, J L (2018) The neuroanatomic complexity of the CRF and DA systems and their interface: What we still don't know. Neurosci Biobehav Rev 90:247-259
Oler, Jonathan A; Tromp, Do P M; Fox, Andrew S et al. (2017) Connectivity between the central nucleus of the amygdala and the bed nucleus of the stria terminalis in the non-human primate: neuronal tract tracing and developmental neuroimaging studies. Brain Struct Funct 222:21-39
Fudge, Julie L; Kelly, Emily A; Pal, Ria et al. (2017) Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate. Neuropsychopharmacology 42:1563-1576
Kalin, Ned H; Fox, Andrew S; Kovner, Rothem et al. (2016) Overexpressing Corticotropin-Releasing Factor in the Primate Amygdala Increases Anxious Temperament and Alters Its Neural Circuit. Biol Psychiatry 80:345-55
Torrisi, Salvatore; O'Connell, Katherine; Davis, Andrew et al. (2015) Resting state connectivity of the bed nucleus of the stria terminalis at ultra-high field. Hum Brain Mapp 36:4076-88
deCampo, Danielle M; Fudge, Julie L (2013) Amygdala projections to the lateral bed nucleus of the stria terminalis in the macaque: comparison with ventral striatal afferents. J Comp Neurol 521:3191-216
Cho, Youngsun T; Ernst, Monique; Fudge, Julie L (2013) Cortico-amygdala-striatal circuits are organized as hierarchical subsystems through the primate amygdala. J Neurosci 33:14017-30
Fudge, J L; deCampo, D M; Becoats, K T (2012) Revisiting the hippocampal-amygdala pathway in primates: association with immature-appearing neurons. Neuroscience 212:104-19
deCampo, Danielle M; Fudge, Julie L (2012) Where and what is the paralaminar nucleus? A review on a unique and frequently overlooked area of the primate amygdala. Neurosci Biobehav Rev 36:520-35
Cho, Y T; Fudge, J L (2010) Heterogeneous dopamine populations project to specific subregions of the primate amygdala. Neuroscience 165:1501-18

Showing the most recent 10 out of 18 publications