It is now evident that many cases of psychiatric and neurodevelopmental disorders, as well as disorders of cognitive function, are due to highly penetrant, rare genetic variants. 22q11.2 deletion is a prominent example of such a variant. Carriers of deletions in chromosome 22q11.2, which predominantly occur de novo, exhibit a spectrum of cognitive deficits and develop schizophrenia in adolescence or early adulthood at a rate of 25-30%. Recurrent 22q11.2 deletions account for as many as 1-2% of cases of sporadic schizophrenia in the general population. Because of its leading role in the genetic landscape of psychiatric disease and cognitive dysfunction, functional analysis of the 22q1.2 deletion holds great promise for providing the biological insights necessary for development of new treatments for these conditions. In this project, we propose to study the impact of 22q11.2 deletions on neuronal structure and function in exquisite depth. Our proposed research focuses on this highly significant problem using state-of-the-art techniques, reliable animal models, and patient- derived neurons, and is designed to improve our understanding of the chain of events leading from the mutation, through its effects on neural cells and circuits, to clinical phenotype and inform the development of new therapeutics. A major aspect of our effort will be to implement carefully controlled translational paradigms to test many of the alterations that we find in mouse models in neurons from patients. Along these lines, we propose to pursue detailed comparative studies between human and mouse, using cortical neurons derived from induced pluripotent stem cells (iPSCs) from humans carrying the 22q11.2 deletion. The strength of this approach is undeniable since it will allow in-depth analysis at the level of the individual neuron and synapse, which are otherwise inaccessible in patients.

Public Health Relevance

Recent advances in genomics have confirmed conclusively a significant role of copy number variants (CNVs) in psychiatric disorders and cognitive dysfunction. One CNV with prominent significance involves deletions on chromosome 22q11.2, which we propose to study in exquisite depth. We offer to take advantage of the reliable mouse models that we have generated for this deletion and human neurons that we have derived from induced pluripotent stem cells (iPSCs) from patients carrying this deletion for a series of in-depth studies designed to improve our understanding of the chain of events leading from the mutation to clinical phenotype and inform the development of new therapeutics.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Research Project (R01)
Project #
Application #
Study Section
Pathophysiological Basis of Mental Disorders and Addictions Study Section (PMDA)
Program Officer
Meinecke, Douglas L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Columbia University (N.Y.)
Schools of Medicine
New York
United States
Zip Code
Barr, Ian; Weitz, Sara H; Atkin, Talia et al. (2015) Cobalt(III) Protoporphyrin Activates the DGCR8 Protein and Can Compensate microRNA Processing Deficiency. Chem Biol 22:793-802
Hsu, Pei-Ken; Xu, Bin; Mukai, Jun et al. (2015) The BDNF Val66Met variant affects gene expression through miR-146b. Neurobiol Dis 77:228-37
Mukai, Jun; Tamura, Makoto; Fénelon, Karine et al. (2015) Molecular substrates of altered axonal growth and brain connectivity in a mouse model of schizophrenia. Neuron 86:680-95
Ellegood, J; Markx, S; Lerch, J P et al. (2014) Neuroanatomical phenotypes in a mouse model of the 22q11.2 microdeletion. Mol Psychiatry 19:99-107
Xu, Bin; Hsu, Pei-Ken; Stark, Kimberly L et al. (2013) Derepression of a neuronal inhibitor due to miRNA dysregulation in a schizophrenia-related microdeletion. Cell 152:262-75
Fénelon, Karine; Xu, Bin; Lai, Cora S et al. (2013) The pattern of cortical dysfunction in a mouse model of a schizophrenia-related microdeletion. J Neurosci 33:14825-39
Arguello, P Alexander; Gogos, Joseph A (2012) Genetic and cognitive windows into circuit mechanisms of psychiatric disease. Trends Neurosci 35:3-13
Drew, Liam J; Stark, Kimberly L; Fenelon, Karine et al. (2011) Evidence for altered hippocampal function in a mouse model of the human 22q11.2 microdeletion. Mol Cell Neurosci 47:293-305
Ho, Gary P H; Selvakumar, Balakrishnan; Mukai, Jun et al. (2011) S-nitrosylation and S-palmitoylation reciprocally regulate synaptic targeting of PSD-95. Neuron 71:131-41
Drew, Liam J; Crabtree, Gregg W; Markx, Sander et al. (2011) The 22q11.2 microdeletion: fifteen years of insights into the genetic and neural complexity of psychiatric disorders. Int J Dev Neurosci 29:259-81

Showing the most recent 10 out of 21 publications