A molecular replacement of AMPA receptor subunits will be used to probe the molecular basis of AMPA receptor trafficking. Long-term potentiation (LTP), a phenomenon in which brief repetitive activation of excitatory synapses results in a persistent enhancement in synaptic transmission, is the most compelling cellular model in the mammalian brain for learning and memory. Excitatory synapses release glutamate, which acts on two types of receptors;AMPA receptors (AMPARs) and NMDARs. AMPARs are hetero-tetrameric composed of combinations of the subunits GluR1-4. Evidence suggests that the change in synaptic strength during LTP is due in large part to the recruitment of AMPARs to the synapse. Two seemingly incompatible models have developed to explain AMPAR trafficking. First is the "subunit rules model" in which the C-termini of the various subunits, via their interaction with cytoplasmic scaffolding proteins, determine the mode of trafficking. Second is the "TARP-dependent trafficking model". We have discovered a family of Transmembrane AMPAR Regulatory Proteins (TARPs), which directly bind to AMPARs and to specific synaptic scaffolding proteins and are critical for surface and synaptic expression of AMPARs. The subunit rules model is entirely based on the overexpression of proteins on a wild type background, which, although powerful, has a number of limitations. In addition, these data are difficult to reconcile with conclusions from gene-targeted deletion of AMPA receptor subunits in mice. The goal of this competitive renewal is to develop a novel strategy for defining the exact role(s) of the various AMPAR subunits in trafficking. This strategy takes advantage of conditional KO technology, in which expression of Cre recombinase in single cells, excises a critical segment of the gene and acutely (~2 weeks) deletes the protein of interest. In collaboration with Dr. Peter Seeburg we will use floxed mice for GluR1, 2 and 3. Using these mice, in combination with the expression of mutated subunits in a null background, we will determine the subunit composition of synaptic and extrasynaptic AMPARs, and their role in basal and activity-dependent trafficking of receptors. These studies will provide the most definitive characterization of AMPAR trafficking and will hopefully reconcile the differences in the two prevailing models of AMPA trafficking.

Public Health Relevance

Learning and memory is one of the most important functions of the brain and yet we know extraordinarily little about the underlying mechanisms. The elucidation of the cellular and molecular mechanisms will provide a platform for the development of a rational therapeutic approach for such diseases as Alzheimer's Disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH070957-10
Application #
8437269
Study Section
Synapses, Cytoskeleton and Trafficking Study Section (SYN)
Program Officer
Asanuma, Chiiko
Project Start
2004-03-11
Project End
2014-02-28
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
10
Fiscal Year
2013
Total Cost
$361,567
Indirect Cost
$123,967
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Incontro, Salvatore; Asensio, Cedric S; Edwards, Robert H et al. (2014) Efficient, complete deletion of synaptic proteins using CRISPR. Neuron 83:1051-7
Granger, Adam J; Gray, John A; Lu, Wei et al. (2011) Genetic analysis of neuronal ionotropic glutamate receptor subunits. J Physiol 589:4095-101
Lu, Wei; Gray, John A; Granger, Adam J et al. (2011) Potentiation of synaptic AMPA receptors induced by the deletion of NMDA receptors requires the GluA2 subunit. J Neurophysiol 105:923-8
Lu, Wei; Isozaki, Kaname; Roche, Katherine W et al. (2010) Synaptic targeting of AMPA receptors is regulated by a CaMKII site in the first intracellular loop of GluA1. Proc Natl Acad Sci U S A 107:22266-71
Lu, Wei; Shi, Yun; Jackson, Alexander C et al. (2009) Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron 62:254-68
Menuz, Karen; Kerchner, Geoffrey A; O'Brien, Jessica L et al. (2009) Critical role for TARPs in early development despite broad functional redundancy. Neuropharmacology 56:22-9
Menuz, Karen; O'Brien, Jessica L; Karmizadegan, Siavash et al. (2008) TARP redundancy is critical for maintaining AMPA receptor function. J Neurosci 28:8740-6
Milstein, Aaron D; Nicoll, Roger A (2008) Regulation of AMPA receptor gating and pharmacology by TARP auxiliary subunits. Trends Pharmacol Sci 29:333-9