This is an application for an R01 grant entitled, """"""""Novel DT-MRI Analyses of White Matter in Schizophrenia"""""""". The goal of this five-year award is to apply new approaches for evaluating white matter abnormalities in schizophrenia using Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) and DT-MRI post-processing techniques. This work builds upon our previous work showing that white matter tracts can be detected and delineated with DT-MRI. These tools will be further developed and then applied to DT-MRI data in order to evaluate white matter fiber tract abnormalities in schizophrenia (i.e., uncinate fasciculus, corpus callosum and cingulum bundle).
The specific aims of this project are: (1) to developed and apply novel spatial normalization and registration methods;(2) to develop and apply a novel 3D DT-MRI tractography method based on stochastic modeling, (3) to develop and apply automated tools for grouping tractography results into anatomically meaningful white matter bundles and ROIs, and (4) to evaluate fiber tract integrity in a patient population by a lying new quantitative measures of diffusion in white matter, and comparing their mean values in the aforementioned arcellated ROIs. Although the clinical focus of this grant is on schizophrenia, this technology will be directly applicable to other fields using data from DTI, such as for the early detection of white matter damage in the developing infant brain, exploration and characterization of white matter disruptions caused by MS lesions, and visualization of important white matter tracts during neurosurgical procedures. Of further importance, we plan to make these tools available to other researchers by implementing them in an open-source platform. We believe that these latter goals are particularly important for disseminating novel techniques for analyzing DT-MRI data to the larger neuroscience community.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH074794-04
Application #
7770826
Study Section
Special Emphasis Panel (ZRG1-BDCN-K (10))
Program Officer
Rumsey, Judith M
Project Start
2007-02-15
Project End
2012-01-31
Budget Start
2010-02-01
Budget End
2011-01-31
Support Year
4
Fiscal Year
2010
Total Cost
$354,375
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Saito, Yukiko; Kubicki, Marek; Koerte, Inga et al. (2018) Impaired white matter connectivity between regions containing mirror neurons, and relationship to negative symptoms and social cognition, in patients with first-episode schizophrenia. Brain Imaging Behav 12:229-237
Nilsson, Markus; Larsson, Johan; Lundberg, Dan et al. (2018) Liquid crystal phantom for validation of microscopic diffusion anisotropy measurements on clinical MRI systems. Magn Reson Med 79:1817-1828
Zhang, Fan; Wu, Ye; Norton, Isaiah et al. (2018) An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan. Neuroimage 179:429-447
Ning, Lipeng; Nilsson, Markus; Lasi?, Samo et al. (2018) Cumulant expansions for measuring water exchange using diffusion MRI. J Chem Phys 148:074109
Albi, Angela; Meola, Antonio; Zhang, Fan et al. (2018) Image Registration to Compensate for EPI Distortion in Patients with Brain Tumors: An Evaluation of Tract-Specific Effects. J Neuroimaging 28:173-182
Özarslan, Evren; Yolcu, Cem; Herberthson, Magnus et al. (2018) Influence of the size and curvedness of neural projections on the orientationally averaged diffusion MR signal. Front Phys 6:
Zhang, Fan; Savadjiev, Peter; Cai, Weidong et al. (2018) Whole brain white matter connectivity analysis using machine learning: An application to autism. Neuroimage 172:826-837
Ning, Lipeng; Rathi, Yogesh (2018) A Dynamic Regression Approach for Frequency-Domain Partial Coherence and Causality Analysis of Functional Brain Networks. IEEE Trans Med Imaging 37:1957-1969
McCarthy-Jones, Simon; Oestreich, Lena K L; Lyall, Amanda E et al. (2018) Childhood adversity associated with white matter alteration in the corpus callosum, corona radiata, and uncinate fasciculus of psychiatrically healthy adults. Brain Imaging Behav 12:449-458
Lyall, A E; Pasternak, O; Robinson, D G et al. (2018) Greater extracellular free-water in first-episode psychosis predicts better neurocognitive functioning. Mol Psychiatry 23:701-707

Showing the most recent 10 out of 163 publications