Neural stem/progenitor cells (NSCs) in postnatal and adult brains may play a major role in both normal brain functions, such as learning and memory, as well as the brain's response to injury and disease. Understanding NSCs and adult neurogenesis holds the key to therapeutic applications of not only NSCs but also many other types of stem cells. In addition, NSCs make an excellent model system for studying neurodevelopment and related disorders with postnatal etiology, such as autism spectrum disorders. Our ultimate goal is to reveal mechanisms regulating NSCs and uncover new therapeutic targets for treating mental disorders. Neurogenesis is defined as generation and maturation of new neurons. Although the specific purpose of adult neurogenesis is not entirely clear, work from ours and others'have provided evidence supporting its important roles in adult neuroplasticity and hippocampus-dependent learning. Both adult hippocampal neurogenesis and learning are altered in a number of pathological conditions. However how they contribute to human intellectual disability, a deficiency in learning and memory, is still unclear. Fragile X mental retardation protein (FMRP) is a neuron- enriched selective RNA-binding protein associated with polyribosomes and it is known to regulate protein translation. Functional loss of FMRP leads to Fragile X syndrome, most common monogenetic form of inherited intellectual disability and autism, with learning disability. Despite extensive effort, the mechanisms underlying the learning deficits in Fragile X syndrome remain unclear. During the current funding period, we have found that FMRP is highly expressed in adult NSCs and regulates the translational of several proteins involved in NSC fate specification. Using null and conditional inducible mouse genetics, we have demonstrated that FMRP deficiency impairs both hippocampal neurogenesis and hippocampus-dependent learning (PloS Genet 2010;Nat Med 2011). In addition, manipulation of FMRP-regulated pathways, such as treatment by a Gsk3? inhibitor, rescues both neurogenesis and learning deficits of FMRP null mice (Hum Mol Genet 2011). These data provide direct evidence for the role of FMRP in postnatal neurogenesis and learning and present us a unique opportunity for understanding the specific roles and functional impact of RNA binding protein- mediated translational regulation in postnatal/adult neurogenesis and learning disabilities. Built upon these exciting data and our strength, the current proposal aims to test the hypothesis that FMRP regulates multiple stages of adult neurogenesis and its deficiency disrupts the development and impairs the function of new neurons. To test this hypothesis, we will define the roles of FMRP in stem and progenitor cells in the adult DG (Aim 1);determine specific function of FMRP in new DG neurons (Aim 2);and determine the mechanism underlying FMRP regulation of adult neurogenesis (Aim 3). These data will provide critical information regarding not only the function of FMRP in neurogenesis but also the function of stage-specific neurogenesis in learning and memory.

Public Health Relevance

Characterizing the role of FMRP family of RNA binding proteins in regulating postnatal neurogenesis and learning will provide insights into the mechanisms underlying mammalian neuronal development and learning, which could have significant implication in understanding and treating mental disorders including not only Fragile X syndrome but also autism, depression, and other learning deficits.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH078972-09
Application #
8688349
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Beckel-Mitchener, Andrea C
Project Start
2007-06-01
Project End
2017-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
9
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Pediatrics
Type
Graduate Schools
DUNS #
City
Madison
State
WI
Country
United States
Zip Code
53715
Bhattacharyya, Anita; Zhao, Xinyu (2016) Human pluripotent stem cell models of Fragile X syndrome. Mol Cell Neurosci 73:43-51
Jobe, Emily M; Gao, Yu; Eisinger, Brian E et al. (2016) Methyl-CpG binding protein MBD1 regulates neuronal lineage commitment through maintaining adult neural stem cell identity. J Neurosci :
Li, Yue; Stockton, Michael E; Bhuiyan, Ismat et al. (2016) MDM2 inhibition rescues neurogenic and cognitive deficits in a mouse model of fragile X syndrome. Sci Transl Med 8:336ra61
Gao, Yu; Wang, Feifei; Eisinger, Brian E et al. (2016) Integrative Single-Cell Transcriptomics Reveals Molecular Networks Defining Neuronal Maturation During Postnatal Neurogenesis. Cereb Cortex :
Guo, Weixiang; Polich, Eric D; Su, Juan et al. (2015) Fragile X Proteins FMRP and FXR2P Control Synaptic GluA1 Expression and Neuronal Maturation via Distinct Mechanisms. Cell Rep 11:1651-66
Wang, Feifei; Tidei, Joseph J; Polich, Eric D et al. (2015) Positive feedback between RNA-binding protein HuD and transcription factor SATB1 promotes neurogenesis. Proc Natl Acad Sci U S A 112:E4995-5004
Gao, Yu; Su, Juan; Guo, Weixiang et al. (2015) Inhibition of miR-15a Promotes BDNF Expression and Rescues Dendritic Maturation Deficits in MeCP2-Deficient Neurons. Stem Cells 33:1618-29
Chow, Cynthia L; Guo, Weixiang; Trivedi, Parul et al. (2015) Characterization of a unique cell population marked by transgene expression in the adult cochlea of nestin-CreER(T2)/tdTomato-reporter mice. J Comp Neurol 523:1474-87
Li, Hongda; Zhong, Xiaofen; Chau, Kevin F et al. (2014) Cell cycle-linked MeCP2 phosphorylation modulates adult neurogenesis involving the Notch signalling pathway. Nat Commun 5:5601
Li, Yue; Zhao, Xinyu (2014) Concise review: Fragile X proteins in stem cell maintenance and differentiation. Stem Cells 32:1724-33

Showing the most recent 10 out of 34 publications