The communication between neurons at synapses occurs in small spaces with small numbers of molecules, far from equilibrium in unmixed volumes. The dynamics of chemical reactions in microdomains is difficult to estimate without having an accurate model of sub-cellular ultrastructure as well as detailed knowledge of the locations and kinetic rate constants of all the relevant molecules, including the neurotransmitter receptors, transporters, binding proteins, degradative enzymes, and other signaling targets. For example, common signaling agents such as calcium have different effects depending on where they enter the cell, and where their targets are located. If the spatial organization of the cell is important, then it is not enough to reconstruct the reaction network of signal transduction pathways. Clearly, to study and understand the behavior of these signaling pathways it is essential to obtain accurate three-dimensional (3-D) anatomical reconstructions of the pathways;that is, to place the signaling pathways within their natural context, which includes the cellular ultrastructure and 3-D distributions of the biochemical molecules. Here, using the MCell Monte Carlo computational modeling program and high-resolution 3-D reconstructions of neural tissue, we propose to explore three components of synaptic signaling: 1) calcium dynamics in the presynaptic boutons from area CA3 pyramidal cells in the rat hippocampus, 2) calcium microdomains in the vicinity of ligand-gated ion channels in postsynaptic calyciform synapses of the avian ciliary ganglion, and 3) extracellular glutamate dynamics in glomeruli from rat cerebellar cortex. These three systems are sufficiently well characterized for quantitative modeling and will allow us to explore the mechanisms underlying the release of neurotransmitter following the entry of calcium into the presynaptic terminal and cross-talk between release sites, the effects of calcium entry into the postsynaptic cell, and the diffusion of neurotransmitter in the synaptic cleft and spillover to neighboring synapses in extracellular space. The detailed level of understanding of these systems afforded by these MCell models will provide new insights that may be applicable to many other synapses, and in particular should help to elucidate how dysfunctions in signaling microdomains may contribute to neurological and psychiatric pathology.

Public Health Relevance

Neurons communicate at synapses, where chemicals released by the presynaptic neuron bind to receptors on the postsynaptic neuron and open channels in the membrane that ions flow through. We will study every aspect of this process using a computer model, called MCell, which simulates every important molecule and chemical interaction between them during synaptic signaling. These studies will help us understand how synapses work and how they dysfunction in neurological and psychiatric pathology.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH079076-05
Application #
8267127
Study Section
Biophysics of Neural Systems Study Section (BPNS)
Program Officer
Glanzman, Dennis L
Project Start
2008-07-01
Project End
2014-03-31
Budget Start
2012-04-01
Budget End
2014-03-31
Support Year
5
Fiscal Year
2012
Total Cost
$438,383
Indirect Cost
$204,982
Name
Salk Institute for Biological Studies
Department
Type
DUNS #
078731668
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Stefan, Melanie I; Bartol, Thomas M; Sejnowski, Terrence J et al. (2014) Multi-state modeling of biomolecules. PLoS Comput Biol 10:e1003844
Regner, Benjamin M; Vucinic, Dejan; Domnisoru, Cristina et al. (2013) Anomalous diffusion of single particles in cytoplasm. Biophys J 104:1652-60
Kinney, Justin P; Spacek, Josef; Bartol, Thomas M et al. (2013) Extracellular sheets and tunnels modulate glutamate diffusion in hippocampal neuropil. J Comp Neurol 521:448-64
Coggan, Jay S; Ocker, Gabriel K; Sejnowski, Terrence J et al. (2011) Explaining pathological changes in axonal excitability through dynamical analysis of conductance-based models. J Neural Eng 8:065002
Volman, Vladislav; Levine, Herbert; Sejnowski, Terrence J (2010) Shunting inhibition controls the gain modulation mediated by asynchronous neurotransmitter release in early development. PLoS Comput Biol 6:e1000973
Nadkarni, Suhita; Bartol, Thomas M; Sejnowski, Terrence J et al. (2010) Modelling vesicular release at hippocampal synapses. PLoS Comput Biol 6:e1000983