The theme of the proposed project is to develop a functional template or atlas of the developing brain based on quantitative cerebral blood flow (CBF) measurements using arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI). Parenchymal perfusion is an important physiologic parameter in the evaluation and management of brain disorders as well as a surrogate index of neural activity. Such information has been sparse in the pediatric population due to the safety concerns and technical difficulties associated with existing methods to measure perfusion that rely on radioisotopes and contrast agents. ASL perfusion MRI is ideally suited for pediatric perfusion imaging, because it is totally noninvasive and provides high image quality due to unique physiologic properties of a child brain. The capability for absolute CBF quantification is another desirable feature of ASL for longitudinal studies to follow neurodevelopmental changes. Through a pilot Human Brain Project funded by NIMH (R21- MH072576, PI: Wang), we have established the feasibility of pediatric perfusion MRI using ASL, and demonstrated the developmental trajectory of CBF in healthy children as well as perfusion aberrations in pre-clinical and clinical pediatric populations. The proposed R01 project represents a continued and systematic effort to address the functional development of a child brain utilizing ASL perfusion MRI. We will first establish the test-retest repeatability and determine the optimal ASL technique along with imaging parameters for constructing the pediatric perfusion template. The accuracy of ASL CBF measurement in children will be validated using global flow rate to the brain determined by phase contrast MRI technique. In the following 4 years, we will develop the normative developmental template of brain perfusion in healthy children aged 7-16 based on ASL perfusion measurements at baseline. In the last aim, we will characterize the quantitative CBF changes in response to a well-characterized cognitive paradigm - working memory tasks - using a concurrent ASL and BOLD (blood-oxygen-level- dependent) fMRI paradigm. Once developed, the pediatric perfusion template will not only shed light on the evolution of brain function with age, but will also provide a valuable resource and reference system for future developmental neuroscience studies as well as clinical studies on childhood brain disorders.

Public Health Relevance

The proposed project will develop a functional template or atlas of the cerebral blood flow (perfusion) in healthy children aged 7-16 years. A noninvasive magnetic resonance imaging technique termed arterial spin labeling will be used to measure perfusion of a child brain with high precision and spatial resolution. The developed pediatric perfusion template will not only shed light on the evolution of brain function with age, but will also provide a valuable resource and reference system for future clinical and cognitive neuroscience studies on childhood brain disorders.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-NT-B (01))
Program Officer
Freund, Michelle
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Schools of Medicine
Los Angeles
United States
Zip Code
Jann, Kay; Gee, Dylan G; Kilroy, Emily et al. (2015) Functional connectivity in BOLD and CBF data: similarity and reliability of resting brain networks. Neuroimage 106:111-22
Shi, Yonggang; Lai, Rongjie; Wang, Danny J J et al. (2014) Metric optimization for surface analysis in the Laplace-Beltrami embedding space. IEEE Trans Med Imaging 33:1447-63
Smith, Robert X; Yan, Lirong; Wang, Danny J J (2014) Multiple time scale complexity analysis of resting state FMRI. Brain Imaging Behav 8:284-91
Li, Junning; Shi, Yonggang; Tran, Giang et al. (2014) Fast local trust region technique for diffusion tensor registration using exact reorientation and regularization. IEEE Trans Med Imaging 33:1005-22
Yu, S L; Wang, R; Wang, R et al. (2014) Accuracy of vessel-encoded pseudocontinuous arterial spin-labeling in identification of feeding arteries in patients with intracranial arteriovenous malformations. AJNR Am J Neuroradiol 35:65-71
Kilroy, Emily; Apostolova, Liana; Liu, Collin et al. (2014) Reliability of two-dimensional and three-dimensional pseudo-continuous arterial spin labeling perfusion MRI in elderly populations: comparison with 15O-water positron emission tomography. J Magn Reson Imaging 39:931-9
Li, Chun-Xia; Patel, Sudeep; Wang, Danny J J et al. (2014) Effect of high dose isoflurane on cerebral blood flow in macaque monkeys. Magn Reson Imaging 32:956-60
Wang, Rui; Yu, Songlin; Alger, Jeffry R et al. (2014) Multi-delay arterial spin labeling perfusion MRI in moyamoya disease--comparison with CT perfusion imaging. Eur Radiol 24:1135-44
Tak, Sungho; Wang, Danny J J; Polimeni, Jonathan R et al. (2014) Dynamic and static contributions of the cerebrovasculature to the resting-state BOLD signal. Neuroimage 84:672-80
Park, Sung-Hong; Wang, Danny J J; Duong, Timothy Q (2013) Balanced steady state free precession for arterial spin labeling MRI: Initial experience for blood flow mapping in human brain, retina, and kidney. Magn Reson Imaging 31:1044-50

Showing the most recent 10 out of 35 publications