The flexible regulation of emotional processes is a hallmark of normal adaptive behavior. To wit, the same stimulus or action can elicit a positive emotional response in one situation, but a negative one in another situation. In general, stimuli or actions can acquire affective meaning through experience. Subjects learn that previously "neutral" stimuli or actions predict rewarding or aversive events. Thus the motivational significance, or "value", of stimuli can be changed by virtue of this experience. Here, value can have either positive or negative valence. Emotional responses to these stimuli may be based in large part on the representation of value. This grant explores the mechanisms by which the brain adjusts representations of the value of learned stimuli. Brain structures likely to participae in implementing these processes include the amygdala, long recognized as a critical structure in coordinating emotional responses, and the prefrontal cortex, which contains two brain areas densely interconnected with the amygdala: the anterior cingulate and orbitofrontal cortices. These prefrontal areas are thought to confer the type of flexible regulation required for rapid emotional adjustments. In this grant, we will study two different ways in which the value of stimuli and/or actions may be adjusted.
In Aim 1, we will study the role of the amygdala and anterior cingulate cortex in a reversal learning procedure, whereby the previously learned associations of two stimuli reverse (or switch). We will characterize the relationship between processing in the amygdala and ACC during this task, building on our prior work studying the amygdala's relationship with OFC.
In Aim 2, we will use two different tasks to study how subjects can adjust their representation of the value of a stimulus by knowing how to apply a rule. In one task, no operant actions are required of the experimental subjects, but reinforcement delivery does follow rules. In the second task, subjects must perform the correct operant action according to a rule in order to obtain reinforcement. The second task was designed to elucidate the differential role of the anterior cingulate cortex, as compared to the orbitofrontal cortex and amygdala, as the anterior cingulate has been proposed to play a prominent role in action valuation, error monitoring, and subsequent adjustments of behavior. This work has direct relevance to understanding the neural circuitry that becomes dysfunctional in many psychiatric disorders, such as mood and anxiety disorders, as well as schizophrenia. In those disorders, dysfunction in amygdala- prefrontal circuitry likely impairs the type of emotional flexibility required for normal mental health.

Public Health Relevance

The aim of this proposal is to understand how neural representations of value are updated in the brain. Since many psychiatric disorders, like anxiety and mood disorders, involve dysfunction in the neural circuits that update representations of value, this project promises to lay the groundwork for developing new treatments.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
2R01MH082017-06
Application #
8438295
Study Section
Special Emphasis Panel (SPC)
Program Officer
Simmons, Janine M
Project Start
2007-12-01
Project End
2017-10-31
Budget Start
2013-02-01
Budget End
2013-10-31
Support Year
6
Fiscal Year
2013
Total Cost
$567,595
Indirect Cost
$212,848
Name
Columbia University (N.Y.)
Department
Neurosciences
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Peck, Christopher J; Salzman, C Daniel (2014) Amygdala neural activity reflects spatial attention towards stimuli promising reward or threatening punishment. Elife 3:
Peck, Ellen L; Peck, Christopher J; Salzman, C Daniel (2014) Task-dependent spatial selectivity in the primate amygdala. J Neurosci 34:16220-33
Peck, Christopher J; Salzman, C Daniel (2014) The amygdala and basal forebrain as a pathway for motivationally guided attention. J Neurosci 34:13757-67
Zhang, Wujie; Schneider, David M; Belova, Marina A et al. (2013) Functional circuits and anatomical distribution of response properties in the primate amygdala. J Neurosci 33:722-33
Peck, Christopher J; Lau, Brian; Salzman, C Daniel (2013) The primate amygdala combines information about space and value. Nat Neurosci 16:340-8
Morrison, Sara E; Salzman, C Daniel (2011) Representations of appetitive and aversive information in the primate orbitofrontal cortex. Ann N Y Acad Sci 1239:59-70
Morrison, Sara E; Saez, Alexandre; Lau, Brian et al. (2011) Different time courses for learning-related changes in amygdala and orbitofrontal cortex. Neuron 71:1127-40
Rigotti, Mattia; Ben Dayan Rubin, Daniel; Morrison, Sara E et al. (2010) Attractor concretion as a mechanism for the formation of context representations. Neuroimage 52:833-47
Salzman, C Daniel; Fusi, Stefano (2010) Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annu Rev Neurosci 33:173-202
Morrison, Sara E; Salzman, C Daniel (2010) Re-valuing the amygdala. Curr Opin Neurobiol 20:221-30

Showing the most recent 10 out of 13 publications