Daily oscillations in mammalian physiology and behavior persist even in a constant environment, and their disruption leads to jet lag, sleep disorders, and other maladies, including mood disorders. Such "circadian" (ca. 24 hr) rhythms depend on a biological clock located within the brain, in the suprachiasmatic nucleus (SCN). Most cells express "clock genes", components of a transcriptional feedback loop comprising the intracellular clock, but the SCN is the master pacemaker: it has access to synchronizing light/dark input from the retina, specialized coupling mechanisms to maintain coherence among its component cellular oscillators and enhance its robustness, and neuronal efferent projections to synchronize cellular oscillators in peripheral tissues throughout the body. Recent work, however, has challenged the simplistic view that SCN neurons are all stable, autonomous, single cell transcriptional feedback oscillators. The objective of this proposal is to define the autonomy, persistence, and precision of SCN and fibroblast circadian clock cells, and to explore the interdependence of intracellular transcriptional, electrical, and calcium rhythms in these cells. This will be accomplished using mechanical, pharmacologic, and genetic approaches to disrupt cell interactions and manipulate membrane potential or intracellular calcium. Effects on the intracellular circadian clock will be assessed in individual cells by using optical methods to measure calcium and clock gene transcription, and multielectrode arrays to monitor neuronal firing. Specifically, we will test the hypotheses that: (1) SCN neurons require tonic (but not rhythmic) input from other neurons to maintain rhythmicity, (2) apparent non-rhythmicity of some SCN neurons is a stochastic event due to membrane hyperpolarization rather than a reflection of a stable non-rhythmic subtype, and (3) cells require a tonic level of calcium (but not rhythmic calcium) for transcriptional or electrical rhythms. Answers to these fundamental questions about the cellular basis of circadian rhythmicity will be essential for an understanding of how circadian clocks contribute to health and disease, and serve as a basis for novel therapeutic approaches.

Public Health Relevance

A biological clock in the human brain keeps track of time of day and orchestrates countless circadian (ca. 24 hr) rhythms throughout the body. By further delineating the mechanisms of this clock at the level of single cells, the experiments proposed here may suggest new therapeutic approaches not only to jet lag, shift work, and other sleep disorders, but also to cancer, diabetes, and depression.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Research Project (R01)
Project #
Application #
Study Section
Biological Rhythms and Sleep Study Section (BRS)
Program Officer
Asanuma, Chiiko
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Schools of Medicine
La Jolla
United States
Zip Code
Ramanathan, Chidambaram; Xu, Haiyan; Khan, Sanjoy K et al. (2014) Cell type-specific functions of period genes revealed by novel adipocyte and hepatocyte circadian clock models. PLoS Genet 10:e1004244
McCarthy, M J; Wei, H; Marnoy, Z et al. (2013) Genetic and clinical factors predict lithium's effects on PER2 gene expression rhythms in cells from bipolar disorder patients. Transl Psychiatry 3:e318
Noguchi, Takako; Wang, Lexie L; Welsh, David K (2013) Fibroblast PER2 circadian rhythmicity depends on cell density. J Biol Rhythms 28:183-92
McCarthy, Michael J; Fernandes, Malcolm; Kranzler, Henry R et al. (2013) Circadian clock period inversely correlates with illness severity in cells from patients with alcohol use disorders. Alcohol Clin Exp Res 37:1304-10
Leise, Tanya L; Wang, Connie W; Gitis, Paula J et al. (2012) Persistent cell-autonomous circadian oscillations in fibroblasts revealed by six-week single-cell imaging of PER2::LUC bioluminescence. PLoS One 7:e33334
Foley, Nicholas C; Tong, Tina Y; Foley, Duncan et al. (2011) Characterization of orderly spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus. Eur J Neurosci 33:1851-65
Meeker, Kirsten; Harang, Richard; Webb, Alexis B et al. (2011) Wavelet measurement suggests cause of period instability in mammalian circadian neurons. J Biol Rhythms 26:353-62
Vacic, Vladimir; McCarthy, Shane; Malhotra, Dheeraj et al. (2011) Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature 471:499-503
Ko, Caroline H; Yamada, Yujiro R; Welsh, David K et al. (2010) Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biol 8:e1000513
Welsh, David K; Takahashi, Joseph S; Kay, Steve A (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551-77

Showing the most recent 10 out of 11 publications