It is widely accepted that genes interact with environment to affect brain function and behavior. Exercise is a potent environmental factor with known benefits for physical health such as strength and stamina. The recent discovery that exercise can also enhance cognitive performance has generated much enthusiasm and interest, but mechanisms are far less understood. A growing body of evidence in rodent animal models suggests that exercise is a natural generator of neural plasticity. One example is growth of new neurons in the hippocampus, which is strongly regulated by exercise along with many other changes (e.g., trophic factors, growth factors, capillaries). Harnessing mechanisms of the natural generator could be useful for treating a wide range of neurological problems such as cognitive aging, neurodegenerative disease, stroke, or head trauma. One approach to find a mechanism is to systematically block changes in each hypothesized substrate (e.g., new neurons). Another is unbiased exploration of genetic mechanisms. We propose both. Preliminary data suggest that exercise induced changes in hippocampal neurogenesis and learning vary depending on genotype in mice.
Aims 1 and 2 are to identify sets of genotypes that display larger versus smaller benefits. This crucial information will be contributed to a database of phenotypic and genetic information on these strains, and used in the future to identify mechanisms for cognitive benefits of exercise at multiple levels of biological organization from genes to physiology to behavior. In addition to laying the groundwork for the genetic analysis, we also propose an innovative method in aim 3 to reduce neurogenesis in exercising mice, focal gamma radiation, to directly test the hypothesis that new neurons are required for enhanced learning from exercise in predisposed genotypes. For this, we propose to use the genotype C57BL/6J, as proof of principal, because a strong correlation between exercise, neurogenesis, and learning is well established for this strain.

Public Health Relevance

The goal of this project is to discover mechanisms for pro cognitive effects of exercise at multiple levels of biological organization from genes to physiology to behavior.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Research Project (R01)
Project #
Application #
Study Section
Biobehavioral Regulation, Learning and Ethology Study Section (BRLE)
Program Officer
Glanzman, Dennis L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois Urbana-Champaign
Schools of Arts and Sciences
United States
Zip Code
Majdak, Petra; Bucko, Paula J; Holloway, Ashley L et al. (2014) Behavioral and pharmacological evaluation of a selectively bred mouse model of home cage hyperactivity. Behav Genet 44:516-34
Kohman, Rachel A; Bhattacharya, Tushar K; Kilby, Chessa et al. (2013) Effects of minocycline on spatial learning, hippocampal neurogenesis and microglia in aged and adult mice. Behav Brain Res 242:17-24
Dabe, E C; Majdak, P; Bhattacharya, T K et al. (2013) Chronic D-amphetamine administered from childhood to adulthood dose-dependently increases the survival of new neurons in the hippocampus of male C57BL/6J mice. Neuroscience 231:125-35
Kohman, Rachel A; Bhattacharya, Tushar K; Wojcik, Elzbieta et al. (2013) Exercise reduces activation of microglia isolated from hippocampus and brain of aged mice. J Neuroinflammation 10:114
Kohman, Rachel A; Rhodes, Justin S (2013) Neurogenesis, inflammation and behavior. Brain Behav Immun 27:22-32
Kohman, Rachel A; Clark, Peter J; Deyoung, Erin K et al. (2012) Voluntary wheel running enhances contextual but not trace fear conditioning. Behav Brain Res 226:1-7
Clark, P J; Bhattacharya, T K; Miller, D S et al. (2011) Induction of c-Fos, Zif268, and Arc from acute bouts of voluntary wheel running in new and pre-existing adult mouse hippocampal granule neurons. Neuroscience 184:16-27
Zombeck, Jonathan A; Deyoung, Erin K; Brzezinska, Weronika J et al. (2011) Selective breeding for increased home cage physical activity in collaborative cross and Hsd:ICR mice. Behav Genet 41:571-82
Kohman, Rachel A; Rodriguez-Zas, Sandra L; Southey, Bruce R et al. (2011) Voluntary wheel running reverses age-induced changes in hippocampal gene expression. PLoS One 6:e22654
Mustroph, Martina L; Stobaugh, Derrick J; Miller, Daniel S et al. (2011) Wheel running can accelerate or delay extinction of conditioned place preference for cocaine in male C57BL/6J mice, depending on timing of wheel access. Eur J Neurosci 34:1161-9

Showing the most recent 10 out of 17 publications