Na?-dependent neurotransmitter transporters of the presynaptic plasma membrane function in the reuptake of neurotransmitters from the synaptic cleft. These proteins include the serotonin transporter (SERT), norepinephrine transporter (NET) and dopamine transporter (DAT). They regulate the neurotransmission process by directly reducing the neurotransmitter concentration at the synaptic cleft. These transporter proteins can be inhibited by various drugs and therefore are the primary targets for: antidepressants such as fluoxetine (Prozac), sertraline (Zoloft), methylphenidate (Ritalin) -a prescription drug commonly used to treat attention-deficit hyperactivity disorder (ADHD), and psychostimulants like cocaine. In spite of their obvious pharmacological and clinical importance, the binding site for these drugs in the SERT, NET or DAT proteins are unknown, thereby hindering both the understanding of their inhibition mechanism and structure-based drug design.
We aim to identify the binding site in the human neurotransmitter transporters for these various types of drugs and psychostimulants, and to understand their inhibition mechanism, using a combination of structural, biochemical and pharmacological techniques. Specifically, we propose: (A) to propose to identify the binding site in the human SERT and NET proteins for three types of antidepressants;(B) to identify the binding site in DAT for cocaine;(C) to identify the binding sites in the human DAT protein for methylphenidate;(D) to characterize the molecular mechanism of inhibition of neurotransmitter transporters by these drugs.
We aim to understand the inhibition mechanisms of the serotonin and norepinephrine transporters by antidepressants and of the dopamine transporters by Ritalin and cocaine, using a combination of structural, biochemical and pharmacological approaches. Such information will aid in the design of more effective drugs for depression and for attention-deficit hyperactivity disorder, and of agents for the management of cocaine abuse.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH083840-05
Application #
8284419
Study Section
Biochemistry and Biophysics of Membranes Study Section (BBM)
Program Officer
Nadler, Laurie S
Project Start
2008-08-01
Project End
2013-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
5
Fiscal Year
2012
Total Cost
$377,561
Indirect Cost
$154,811
Name
New York University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Ng, Joanne; Zhen, Juan; Meyer, Esther et al. (2014) Dopamine transporter deficiency syndrome: phenotypic spectrum from infancy to adulthood. Brain 137:1107-19
Waight, Andrew B; Czyzewski, Bryan K; Wang, Da-Neng (2013) Ion selectivity and gating mechanisms of FNT channels. Curr Opin Struct Biol 23:499-506
Reith, Maarten E A (2013) Novel structure--function information on biogenic amine transporters revealed by site-directed mutagenesis and alkylation. Neurochem Res 38:1301-2
Wang, Da-Neng; Stieglitz, Heather; Marden, Jennifer et al. (2013) Benjamin Franklin, Philadelphia's favorite son, was a membrane biophysicist. Biophys J 104:287-91
Schmitt, Kyle C; Rothman, Richard B; Reith, Maarten E A (2013) Nonclassical pharmacology of the dopamine transporter: atypical inhibitors, allosteric modulators, and partial substrates. J Pharmacol Exp Ther 346:2-10
Karpowich, Nathan K; Wang, Da-Neng (2013) Assembly and mechanism of a group II ECF transporter. Proc Natl Acad Sci U S A 110:2534-9
Czyzewski, Bryan K; Wang, Da-Neng (2012) Identification and characterization of a bacterial hydrosulphide ion channel. Nature 483:494-7
Mancusso, Romina; Karpowich, Nathan K; Czyzewski, Bryan K et al. (2011) Simple screening method for improving membrane protein thermostability. Methods 55:324-9
Nyola, Ajeeta; Karpowich, Nathan K; Zhen, Juan et al. (2010) Substrate and drug binding sites in LeuT. Curr Opin Struct Biol 20:415-22
Schmitt, Kyle C; Mamidyala, Sreeman; Biswas, Swati et al. (2010) Bivalent phenethylamines as novel dopamine transporter inhibitors: evidence for multiple substrate-binding sites in a single transporter. J Neurochem 112:1605-18

Showing the most recent 10 out of 13 publications