The presynaptic, antidepressant-sensitive serotonin (5-HT) transporter (SERT) is the major mechanism for 5-HT inactivation and recycling in the brain and periphery. In accord with its powerful control over 5-HT signaling and homeostasis, SERT synthesis, trafficking and activity are highly regulated by multiple signaling pathways. Alterations in SERT expression, function or regulation have been implicated in multiple neuropsychiatric disorders, including depression, anxiety, obsessive-compulsive disorder, and autism, though much evidence is indirect, owing in large part to a lack of opportunities to dissect SERT regulation and dysregulation in vivo. Over the last period of support for this project, we demonstrated that an inflammatory cytokine pathway linked to IL-1R/p33? MAPK activation rapidly translates immune system activation to elevated SERT activity, increased 5-HT clearance and altered behavior. Remarkably, this pathway appears to be unable to modulate activity of several autism-associated SERT coding variants, including the hyperfunctional variant Ala56, supporting the idea that a dual analysis of both heritable SERT mutations and cytokine-triggered regulatory pathways can advance our understanding of both fundamental SERT regulation and the networks that drive maladaptive SERT states associated with mental illness. We hypothesize that SERT Ala56 constitutively imposes ?outward- facing? conformations (SERT*) that are normally occupied transiently during the course of normal, presynaptic IL-1R/p38 MAPK regulation. Furthermore, we propose that stabilization of SERT* by the Ala56 mutation throughout life drives disease-associated changes in 5-HT signaling and, more pertinent to the current proposal, provides a unique opportunity to capture transient molecular alterations, interactions and functional states that are otherwise difficult to study. In pursuit of this idea, we generated SERT Ala56 KI mice, and have demonstrated that these animals display autism-like behavioral features, as well as biochemical and functional changes consistent with constitutive IL-1R/p38 MAPK stimulation. To dissect the requirements for immune activation pathways that normally activate wildtype SERT and that contribute to the constitutive hyperactivity of SERT Ala56, we generated mice that afford conditional suppression of either p38? MAPK or its upstream activator, the IL-1R. We also generated mice that prevent or mimic phosphorylation at a key site linked to SERT conformational stabilization and trafficking-independent SERT stimulation. Finally, we appropriate a newly developed, CNS penetrant and isoform-selective, p38? MAPK antagonist, whose use can bypass the potential confounds of developmental p38? MAPK deletion. With these tools we interrogate changes in native SERT phosphorylation states, SERT interacting proteins (SIPs), and functional states, clarifying the relationship between SERT* states of SERT Ala56 and immune-activated transporters. Altogether, our efforts provide an exciting opportunity to gain a deeper understanding of the mechanisms that govern SERT regulation while illuminating broader networks that define risk for brain disorders linked to perturbed 5-HT signaling.

Public Health Relevance

The antidepressant-sensitive serotonin (5-HT) transporter (SERT) inactivates 5-HT after synaptic release and is tightly regulated by multiple intracellular signaling pathways that alter SERT trafficking and activity. We discovered an IL-1R/p38? MAPK- linked pathway that normally translates immune system activation into elevated SERT activity. Our proposal investigates the hypothesis that dynamic regulation through the IL-1R/p38? MAPK pathway is mimicked, and inappropriately stabilized, by the autism-associated SERT coding variant Ala56, whose discovery and modeling in transgenic mice affords a unique opportunity to elucidate mechanisms of SERT regulation and dysregulation in vivo.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
2R01MH094527-25A1
Application #
9384107
Study Section
Neurotransporters, Receptors, and Calcium Signaling Study Section (NTRC)
Program Officer
Nadler, Laurie S
Project Start
1994-08-01
Project End
2022-06-30
Budget Start
2017-07-01
Budget End
2018-06-30
Support Year
25
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Florida Atlantic University
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
004147534
City
Boca Raton
State
FL
Country
United States
Zip Code
33431
Robson, Matthew J; Quinlan, Meagan A; Margolis, Kara Gross et al. (2018) p38? MAPK signaling drives pharmacologically reversible brain and gastrointestinal phenotypes in the SERT Ala56 mouse. Proc Natl Acad Sci U S A 115:E10245-E10254
Simmler, Linda D; Anacker, Allison M J; Levin, Michael H et al. (2017) Blockade of the 5-HT transporter contributes to the behavioural, neuronal and molecular effects of cocaine. Br J Pharmacol 174:2716-2738
Robson, Matthew J; Zhu, Chong-Bin; Quinlan, Meagan A et al. (2016) Generation and Characterization of Mice Expressing a Conditional Allele of the Interleukin-1 Receptor Type 1. PLoS One 11:e0150068
Bermingham, Daniel P; Blakely, Randy D (2016) Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters. Pharmacol Rev 68:888-953
Nackenoff, Alex G; Moussa-Tooks, Alexandra B; McMeekin, Austin M et al. (2016) Essential Contributions of Serotonin Transporter Inhibition to the Acute and Chronic Actions of Fluoxetine and Citalopram in the SERT Met172 Mouse. Neuropsychopharmacology 41:1733-41
Baganz, N L; Lindler, K M; Zhu, C B et al. (2015) A requirement of serotonergic p38? mitogen-activated protein kinase for peripheral immune system activation of CNS serotonin uptake and serotonin-linked behaviors. Transl Psychiatry 5:e671
Ye, Ran; Quinlan, Meagan A; Iwamoto, Hideki et al. (2015) Physical Interactions and Functional Relationships of Neuroligin 2 and Midbrain Serotonin Transporters. Front Synaptic Neurosci 7:20
Kovtun, Oleg; Sakrikar, Dhananjay; Tomlinson, Ian D et al. (2015) Single-quantum-dot tracking reveals altered membrane dynamics of an attention-deficit/hyperactivity-disorder-derived dopamine transporter coding variant. ACS Chem Neurosci 6:526-34
Ye, R; Carneiro, A M D; Han, Q et al. (2014) Quantitative trait loci mapping and gene network analysis implicate protocadherin-15 as a determinant of brain serotonin transporter expression. Genes Brain Behav 13:261-75
Rudnick, Gary; Krämer, Reinhard; Blakely, Randy D et al. (2014) The SLC6 transporters: perspectives on structure, functions, regulation, and models for transporter dysfunction. Pflugers Arch 466:25-42

Showing the most recent 10 out of 24 publications