Optimizing Post Acute Referrals and Effect on Patient Outcomes The Centers for Medicare and Medicaid's vision for post acute care in the 21st century is a system that is patient centered and organized around the individual's needs rather than around the setting in which the care is received. Each year clinicians make more than 13 million decisions about the need for post acute services following hospital discharge of Medicare beneficiaries;yet, there are no empirically derived, clinical guidelines to assist in making these common and important decisions. The post acute care referral process has multiple steps that require careful, comprehensive assessment to determine patients'present needs, anticipate future needs, make appropriate decisions, and coordinate follow-up services. This proposal focuses on the first three steps of this process to achieve the CMS goal of getting the right care for every person every time. The findings of this research team and others have consistently shown that the quality of post acute referral decision making is negatively impacted by shortened lengths of stay, inconsistent assessment, poor communication, and varying levels of expertise and risk tolerance in decision-making. Our team's recently completed NINR study (RO1-NR007674) revealed that experts, given high quality information and the time to deliberate, refer 52% more patients for post acute care than were referred by clinicians. The proposed competing renewal will advance these findings in several important ways. Using over 1200 patient scenarios obtained from the electronic records at 4 hospitals, large numbers of patient characteristics will be analyzed from a socio-demographic and clinically representative sample of elderly patients. In addition, a large group of clinical and scholarly experts will assure multidisciplinary perspectives. The model, labeled as the "expert discharge decision support system" (D2S2), will be embedded in the electronic record and field tested for its effects on patient outcomes.
The specific aims are: 1) To identify the patient characteristics (factors) that are significantly correlated with experts'decisions to refer hospitalized elders for post acute care. 2) To define and validate the most significantly predictive model of factors to mimic experts'referral decisions. 3) To evaluate the effects of the D2S2 on decision making and patient outcomes. Study findings will identify and make available the knowledge of experts to standardize and facilitate the identification of older patients in need of post acute care. Results will improve the quality and consistency of post acute referral decisions, reduce the time required for referrals to occur, and decrease the costs associated with poor outcomes related to unmet post discharge needs. In addition to addressing gaps in knowledge and care quality, the proposed study meets recommended strategies for improving quality and safety outlined by the Institute of Medicine reports and the National Quality Forum where matching patient needs with service delivery is a high priority.

Public Health Relevance

Currently the decision to refer older adults for post hospital care, such as home care, is made by a variety of clinicians using a variety of criteria. This study will develop and test a computerized system that will provide advice to clinicians about these important decisions. The goal is to improve the identification of who needs post acute care, to get them to the most appropriate care, and to prevent rehospitalization.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Nursing Science: Adults and Older Adults Study Section (NSAA)
Program Officer
Mccloskey, Donna J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
Other Health Professions
Schools of Nursing
United States
Zip Code
Bowles, Kathryn H; Hanlon, Alexandra; Holland, Diane et al. (2014) Impact of discharge planning decision support on time to readmission among older adult medical patients. Prof Case Manag 19:29-38
Bowles, Kathryn H; Heil, Eric (2014) From unmet clinical need to entrepreneurship: taking your informatics solution to market. Stud Health Technol Inform 201:315-20
Bowles, Kathryn H (2014) Developing evidence-based tools from EHR data. Nurs Manage 45:18-20
Topaz, Maxim; Rao, Aditi; Masterson Creber, Ruth et al. (2013) Educating clinicians on new elements incorporated into the electronic health record: theories, evidence, and one educational project. Comput Inform Nurs 31:375-9; quiz 380-1
Bowles, Kathryn H; Potashnik, Sheryl; Ratcliffe, Sarah J et al. (2013) Conducting research using the electronic health record across multi-hospital systems: semantic harmonization implications for administrators. J Nurs Adm 43:355-60
Bowles, Kathryn H; Holmes, John H; Ratcliffe, Sarah J et al. (2009) Factors identified by experts to support decision making for post acute referral. Nurs Res 58:115-22
Bowles, Kathryn H; McCorkle, Ruth; Nuamah, Isaac F (2008) Homecare referrals and 12-week outcomes following surgery for cancer. Oncol Nurs Forum 35:377-83
Bowles, Kathryn H; Ratcliffe, Sarah J; Holmes, John H et al. (2008) Post-acute referral decisions made by multidisciplinary experts compared to hospital clinicians and the patients'12-week outcomes. Med Care 46:158-66
Bowles, Kathryn H; Baugh, Amy C (2007) Applying research evidence to optimize telehomecare. J Cardiovasc Nurs 22:5-15
Bowles, Kathy H; Holmes, John H; Naylor, Mary D et al. (2003) Expert consensus for discharge referral decisions using online delphi. AMIA Annu Symp Proc :106-9