Migraine is an immense healthcare burden with limited therapeutic options. Environmental enrichment (EE) reduces migraine. The long-term goal of this project is to determine how EE mitigates migraine, modeled using spreading depression (SD), in order to identify novel targets for development of therapies. SD, the likely cause of migraine with aura (MwA), transiently disrupts myelin. Microglia can polarize to distinct phenotypes that range from classically (M1) to alternatively (M2a) activated states. Microglia generate the oxidative stress that occurs with SD and lowers SD threshold (SDT), suggesting that a pro-inflammatory M1 phenotype enhances SD by damaging myelin and increasing aberrant cross-talk between nerve fibers. In contrast, EE promotes an anti-inflammatory M2a phenotype and raises SDT, while increasing myelination, and oxidative tolerance (OT). EE increases CNS interleukin-11 (IL-11), and IL-11 alone can recreate these effects. The rationale for this project is based on evidence indicating that microglial M2a polarization increases SDT via secreted factors. Preliminary data show that while exosomes released from M1 microglia reduce SDT, those from M2a microglia increase SDT, perhaps by increasing myelination/OT, which could prevent the aberrant excitability that provokes SD. This study will further explore the effects of EE-induced M2a polarization on increasing SDT through production of exosomes. The overall goal is to define exosomal miRNAs from M2a- polarized microglia that most potently increase SDT plus myelination/OT and test their effectiveness in vivo after nasal administration. The central hypothesis is that M2a-polarized microglia release exosomes containing miRNA that mimic the effects of EE on SDT, myelin levels and OT.
The aims are:
Aim 1 : Establish the impact of M2a versus M1 microglia-derived exosomes on SDT, myelination/OT. SD is used to model MwA in rat brain slice cultures and rats. Exosomes from polarized primary microglia are applied to slice cultures for measurement of SDT, myelination/OT.
Aim 2 : Identify miRNA species differentially expressed in M2a versus M1 microglia-derived exosomes and validate their role in influencing myelination/OT. miRNAs are identified using arrays and bioinformatics. Targets are verified using qPCR and Western blots.
Aim 3 : Determine the extent to which unique miRNAs identified in Aim 2 impact SDT, myelination/OT. Exosomes from M2a microglia and dendritic cells (DCs) will be electroporated with specific miRNA inhibitors and mimics respectively, then tested for impact on slice culture SDT, myelination/OT. DC exosomes will be used, as they enter brain nasally to produce functional effects.
Aim 4 : Establish the impact of M2a exosomes in vivo. M2a exosomes will be nasally delivered to brain for measurement of SDT, myelination/OT, and target mRNA/proteins. Trafficking will be determined via in vivo and confocal imaging of tagged exosomes. This work is innovative because it explores M2a microglial exosomes/miRNAs as a means to increase SDT via myelination/OT. It is significant, because it will identify therapeutic miRNAs to be loaded into exosomes for nasal delivery against SD/MwA.

Public Health Relevance

The proposed research study is relevant to public health, because it involves research directed at developing novel therapies for the treatment of migraine, an immense healthcare burden affecting 30 million Americans with annual costs that are estimated to exceed thirty billion dollars a year. Our approach is to determine how environmental enrichment (i.e., increased intellectual, physical and social activity) reduces migraine/SD. Based on our prior work showing that this involves M2a microglia-derived exosomes, here we will identify the feasibility and utility of using these exosomes and their miRNAs to develop nasally delivered therapeutics against SD/MwA.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS019108-27
Application #
9096255
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Oshinsky, Michael L
Project Start
1983-04-01
Project End
2020-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
27
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Chicago
Department
Neurology
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Ochocinska, Margaret J; Zlokovic, Berislav V; Searson, Peter C et al. (2017) NIH workshop report on the trans-agency blood-brain interface workshop 2016: exploring key challenges and opportunities associated with the blood, brain and their interface. Fluids Barriers CNS 14:12
Grinberg, Yelena Y; Zitzow, Lois A; Kraig, Richard P (2017) Intranasally administered IGF-1 inhibits spreading depression in vivo. Brain Res 1677:47-57
Pusic, Kae M; Pusic, Aya D; Kraig, Richard P (2016) Environmental Enrichment Stimulates Immune Cell Secretion of Exosomes that Promote CNS Myelination and May Regulate Inflammation. Cell Mol Neurobiol 36:313-325
Pusic, Aya D; Mitchell, Heidi M; Kunkler, Phillip E et al. (2015) Spreading depression transiently disrupts myelin via interferon-gamma signaling. Exp Neurol 264:43-54
Pusic, Aya D; Kraig, Richard P (2015) Phasic Treatment with Interferon Gamma Stimulates Release of Exosomes that Protect Against Spreading Depression. J Interferon Cytokine Res 35:795-807
Pusic, Kae M; Pusic, Aya D; Kemme, Jordan et al. (2014) Spreading depression requires microglia and is decreased by their M2a polarization from environmental enrichment. Glia 62:1176-94
Pusic, Aya D; Kraig, Richard P (2014) Youth and environmental enrichment generate serum exosomes containing miR-219 that promote CNS myelination. Glia 62:284-99
Pusic, Aya D; Pusic, Kae M; Clayton, Benjamin L L et al. (2014) IFN?-stimulated dendritic cell exosomes as a potential therapeutic for remyelination. J Neuroimmunol 266:12-23
Pusic, Aya D; Pusic, Kae M; Kraig, Richard P (2014) What are exosomes and how can they be used in multiple sclerosis therapy? Expert Rev Neurother 14:353-5
Grinberg, Yelena Y; Dibbern, Megan E; Levasseur, Victoria A et al. (2013) Insulin-like growth factor-1 abrogates microglial oxidative stress and TNF-? responses to spreading depression. J Neurochem 126:662-72

Showing the most recent 10 out of 60 publications