Fracture healing of a weight bearing bone is unique in that loading of the injured bone is required for effective healing of the bone. Thus, one day after initial stabilization, optimal rehabilitation requires the patient to use and mechanically load the fractured bone. The most common reason that patients do not fully participate in this needed rehabilitation is that use and loading can cause intense pain. Currently, there is a limited repertoire of analgesics to control skeletal pain (primarily opiates and NSAIDs) and both have significant, unwanted CNS and/or bone healing side effects. The goal of this proposal is to better understand the peripheral nerves that drive fracture pain, determine whether nerves regulate fracture healing and test whether novel therapies reduce fracture pain without unwanted side effects. The hypotheses we will test are;(a) the bone is preferentially innervated by peptidergic C-fibers and A-delta sensory nerve fibers, while lacking innervation by A-beta and non-peptidergic C-fibers, (b) sensory and sympathetic nerve fibers modulate fracture pain and have efferent functions that modulate bone healing, (c) therapies that target the injured and/or sensitized A-delta and/or peptidergic C-fibers will attenuate fracture pain and d) these therapies have beneficial disease modifying actions on bone healing. To test these hypotheses, the fracture pain model will be generated in adult C57BL/6J male mice following closed fracture of the femur. Transgenic mice that endogenously express GFP in restricted populations of nociceptors will be used in combination with immunohistochemistry to determine whether specific subpopulations of sensory nerve fibers innervate the bone and whether the density, distribution and phenotype of nerves fibers that innervate the bone change following fracture. Selective ablation of sensory or sympathetic nerve fibers using capsaicin or guanethidine will allow us to determine whether these nerve fibers regulate bone remodeling/repair/healing and fracture-induced bone pain. Lastly, we will determine whether administration of reference analgesics (morphine, gabapentin) or novel analgesics that regulate peptidergic (a CGRP antagonist, anti-NGF antibody) or non-peptidergic (P2X3 antagonist) nociceptors modifies fracture pain and fracture healing. These studies should provide insight into the neurobiology of fracture pain and bone remodeling and aid in the development of therapies that attenuate fracture pain without the side effects of current analgesics.

Public Health Relevance

Fractures in both young and adults of a load bearing bone frequently induce severe pain interferes with bone healing and functional recovery of the patient. Our goal is to better understand the peripheral nerves that drive fracture pain, determine whether nerves regulate fracture healing and test whether novel therapies reduce fracture pain without unwanted side effects.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS023970-25
Application #
8252165
Study Section
Special Emphasis Panel (ZRG1-IFCN-E (04))
Program Officer
Chen, Daofen
Project Start
1987-04-01
Project End
2014-01-31
Budget Start
2012-04-01
Budget End
2014-01-31
Support Year
25
Fiscal Year
2012
Total Cost
$324,778
Indirect Cost
$110,403
Name
University of Arizona
Department
Pharmacology
Type
Schools of Medicine
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Mantyh, Patrick W (2014) Bone cancer pain: from mechanism to therapy. Curr Opin Support Palliat Care 8:83-90
Mantyh, Patrick W (2014) The neurobiology of skeletal pain. Eur J Neurosci 39:508-19
Chartier, Stephane R; Thompson, Michelle L; Longo, Geraldine et al. (2014) Exuberant sprouting of sensory and sympathetic nerve fibers in nonhealed bone fractures and the generation and maintenance of chronic skeletal pain. Pain 155:2323-36
Jimenez-Andrade, Juan M; Mantyh, Patrick W (2012) Sensory and sympathetic nerve fibers undergo sprouting and neuroma formation in the painful arthritic joint of geriatric mice. Arthritis Res Ther 14:R101
Ghilardi, Joseph R; Freeman, Katie T; Jimenez-Andrade, Juan M et al. (2012) Neuroplasticity of sensory and sympathetic nerve fibers in a mouse model of a painful arthritic joint. Arthritis Rheum 64:2223-32
Jimenez-Andrade, Juan Miguel; Ghilardi, Joseph R; CastaƱeda-Corral, Gabriela et al. (2011) Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain. Pain 152:2564-74
CastaƱeda-Corral, G; Jimenez-Andrade, J M; Bloom, A P et al. (2011) The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience 178:196-207
Ghilardi, Joseph R; Freeman, Katie T; Jimenez-Andrade, Juan M et al. (2011) Sustained blockade of neurotrophin receptors TrkA, TrkB and TrkC reduces non-malignant skeletal pain but not the maintenance of sensory and sympathetic nerve fibers. Bone 48:389-98
Mantyh, Patrick W; Koltzenburg, Martin; Mendell, Lorne M et al. (2011) Antagonism of nerve growth factor-TrkA signaling and the relief of pain. Anesthesiology 115:189-204
Bloom, Aaron P; Jimenez-Andrade, Juan M; Taylor, Reid N et al. (2011) Breast cancer-induced bone remodeling, skeletal pain, and sprouting of sensory nerve fibers. J Pain 12:698-711

Showing the most recent 10 out of 81 publications