The long term goals are to identify the origins of neocortex, and the nature of the cellular and molecular events that lead to its formation from precursors common to both mammals and reptiles/birds. In order to address these issues, they must be approached as two separate, but related, questions. 1. Can we identify populations in adult nonmammals homologous with populations of adult neocortical neurons of mammals? Are specific cells and pathways common to ancestors of both mammals and reptiles/birds? 2. What are the cellular and molecular events underlying the transformation of the forebrain from nonmammals to mammals? How have the components of the telencephalon been modified to produce the mammalian cortex?

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS024560-12
Application #
2609606
Study Section
Special Emphasis Panel (ZRG1-VISB (02))
Program Officer
Baughman, Robert W
Project Start
1986-07-01
Project End
1999-11-30
Budget Start
1997-12-01
Budget End
1998-11-30
Support Year
12
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Neurosciences
Type
Schools of Medicine
DUNS #
077758407
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Vega-Zuniga, Tomas; Mpodozis, Jorge; Karten, Harvey J et al. (2014) Morphology, projection pattern, and neurochemical identity of Cajal's ""centrifugal neurons"": the cells of origin of the tectoventrogeniculate pathway in pigeon (Columba livia) and chicken (Gallus gallus). J Comp Neurol 522:2377-96
Fredes, Felipe; Vega-Zuniga, Tomas; Karten, Harvey et al. (2012) Bilateral and ipsilateral ascending tectopulvinar pathways in mammals: a study in the squirrel (Spermophilus beecheyi). J Comp Neurol 520:1800-18
Wang, Yuan; Brzozowska-Prechtl, Agnieszka; Karten, Harvey J (2010) Laminar and columnar auditory cortex in avian brain. Proc Natl Acad Sci U S A 107:12676-81
Wang, Yuan; Karten, Harvey J (2010) Three subdivisions of the auditory midbrain in chicks (Gallus gallus) identified by their afferent and commissural projections. J Comp Neurol 518:1199-219
Wang, Yuan; Luksch, Harald; Brecha, Nicholas C et al. (2006) Columnar projections from the cholinergic nucleus isthmi to the optic tectum in chicks (Gallus gallus): a possible substrate for synchronizing tectal channels. J Comp Neurol 494:7-35
Wang, Yuan; Major, Daniel E; Karten, Harvey J (2004) Morphology and connections of nucleus isthmi pars magnocellularis in chicks (Gallus gallus). J Comp Neurol 469:275-97
Marin, Gonzalo; Letelier, Juan Carlos; Henny, Pablo et al. (2003) Spatial organization of the pigeon tectorotundal pathway: an interdigitating topographic arrangement. J Comp Neurol 458:361-80
Major, Daniel E; Rodman, Hillary R; Libedinsky, Camilo et al. (2003) Pattern of retinal projections in the California ground squirrel (Spermophilus beecheyi): anterograde tracing study using cholera toxin. J Comp Neurol 463:317-40
Wu, C C; Russell, R M; Nguyen, R T et al. (2003) Tracing developing pathways in the brain: a comparison of carbocyanine dyes and cholera toxin b subunit. Neuroscience 117:831-45
Wu, C C; Russell, R M; Karten, H J (2000) Ontogeny of the tectorotundal pathway in chicks (Gallus gallus): birthdating and pathway tracing study. J Comp Neurol 417:115-32

Showing the most recent 10 out of 36 publications