Dravet Syndrome (DS) is a devastating childhood neuropsychiatric disorder caused by de novo, heterozygous loss-of-function mutations in brain type-I voltage-gated Na channel Nav1.1. We have developed a mouse genetic model with all the features of DS, including susceptibility to thermally induced seizures and spontaneous seizures, ataxia, circadian rhythm and sleep disorders, cognitive deficit, autistic-like features, and premature death. All these effects are correlated with loss of Na currents and excitability of GABAergic interneurons, without effects on excitatory neurons, which causes imbalance of excitation vs. inhibition in neural circuits. Mutation of Nav1.1 channels specifically in forebrain GABAergic interneurons by the Cre-Lox method is sufficient to cause the major DS symptoms, confirming that DS is caused by loss of Nav1.1 channels in inhibitory neurons. Remarkably, cognitive deficit and autistic-like behaviors of DS mice can be rescued by treatment with a low dose of the GABA-A receptor co-activator clonazepam, demonstrating that these life- changing co-morbidities are caused by the mutation of Nav1.1 channels rather than by neuronal damage from recurrent seizures. Our central hypothesis is that epilepsy and co-morbidities in DS result from failure of excitability of GABAergic inhibitory neurons, which creates an imbalance of excitation vs. inhibition in neural circuits, and that re-balancing excitation and inhibition with drug treatment will have therapeutic value. To further advance understanding of pathophysiology and treatment of DS, we propose four experimental approaches. (i) We will examine hyperexcitability of cells and circuits using specific deletion of Nav1.1 channels in different classes of interneurons in specific brain regions by the Cre-Lox method. We will use brain slice recording methods to document changes in excitability of cells and circuits. (ii) We will use immunocytochemical and mouse genetic approaches to identify the sites of hyperexcitability that appear first in DS mice in vivo and thereby determine the time course of changes in excitability of cells and circuits that lead to epilepsy. (iii) Patients with DS have prolonged episodes of status epilepticus. We will induce status epilepticus in DS mice by thermal stimulation and determine the changes in excitability of cells and circuits. We will assess cell injury by measurements of reactive astrocytes, neuroinflammation, apoptosis, and neuronal cell death. (iv) Our results indicate that rationally designed drug combinations that increase GABAergic neurotransmission are effective in reducing seizures and premature death in DS mice with minimal side effects and that a single low-dose clonazepam treatment can rescue cognitive deficit and autistic-like behaviors. We will optimize combination therapy with a benzodiazepine plus tiagabine in order to develop a therapeutic regimen that prevents seizures, premature death, and cognitive impairment and minimizes effects of tolerance on prolonged therapy. We will examine new-generation, subtype-selective GABA-A receptor activators and test effectiveness of these therapies approaches to control seizures and co-morbidities in DS mice.

Public Health Relevance

Dravet Syndrome (DS) is a devastating childhood neuropsychiatric disorder caused by de novo, heterozygous loss-of-function mutations in brain type-I voltage-gated Na channel Nav1.1. We have developed a mouse genetic model with all the features of DS. This project will provide new insights into the mechanisms of pathophysiology of DS and will develop new therapeutic approaches to this disastrous childhood disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
2R01NS025704-25
Application #
8630545
Study Section
Molecular Neurogenetics Study Section (MNG)
Program Officer
Silberberg, Shai D
Project Start
1988-02-01
Project End
2018-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
25
Fiscal Year
2013
Total Cost
$337,969
Indirect Cost
$119,219
Name
University of Washington
Department
Pharmacology
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Han, Sung; Tai, Chao; Jones, Christina J et al. (2014) Enhancement of inhibitory neurotransmission by GABAA receptors having ?2,3-subunits ameliorates behavioral deficits in a mouse model of autism. Neuron 81:1282-9
Volkow, Nora D; Wang, Gene-Jack; Telang, Frank et al. (2014) Decreased dopamine brain reactivity in marijuana abusers is associated with negative emotionality and addiction severity. Proc Natl Acad Sci U S A 111:E3149-56
Catterall, William A (2014) Sodium channels, inherited epilepsy, and antiepileptic drugs. Annu Rev Pharmacol Toxicol 54:317-38
Baek, Je-Hyun; Rubinstein, Moran; Scheuer, Todd et al. (2014) Reciprocal changes in phosphorylation and methylation of mammalian brain sodium channels in response to seizures. J Biol Chem 289:15363-73
Kalume, Franck (2013) Sudden unexpected death in Dravet syndrome: respiratory and other physiological dysfunctions. Respir Physiol Neurobiol 189:324-8
Kalume, Franck; Westenbroek, Ruth E; Cheah, Christine S et al. (2013) Sudden unexpected death in a mouse model of Dravet syndrome. J Clin Invest 123:1798-808
Oakley, John C; Cho, Alvin R; Cheah, Christine S et al. (2013) Synergistic GABA-enhancing therapy against seizures in a mouse model of Dravet syndrome. J Pharmacol Exp Ther 345:215-24
Han, Sung; Yu, Frank H; Schwartz, Michael D et al. (2012) Na(V)1.1 channels are critical for intercellular communication in the suprachiasmatic nucleus and for normal circadian rhythms. Proc Natl Acad Sci U S A 109:E368-77
Dutton, Stacey B B; Sawyer, Nikki T; Kalume, Franck et al. (2011) Protective effect of the ketogenic diet in Scn1a mutant mice. Epilepsia 52:2050-6
Oakley, John C; Kalume, Franck; Yu, Frank H et al. (2009) Temperature- and age-dependent seizures in a mouse model of severe myoclonic epilepsy in infancy. Proc Natl Acad Sci U S A 106:3994-9

Showing the most recent 10 out of 41 publications