The goal of this proposal is to determine the structural basis for the complex functional properties of G protein coupled receptors (GPCRs) using the 22 adrenergic receptor (22AR) as a model system. GPCRs are the largest family of receptors for hormones and neurotransmitters and therefore the largest group of targets for new therapeutics for a very broad spectrum of diseases including neuropsychiatric, cardiovascular, pulmonary and metabolic disorders, cancer and AIDS. GPCRs exhibit complex and diverse signaling behaviors. A single GPCR can activate more than one G protein subtype as well as G protein independent signaling pathways such as arrestins. Many GPCRs exhibit basal, agonist independent activity. When considering one of the several possible downstream signaling pathways, a drug acting at the orthosteric binding pocket may exhibit one of four different efficacy profiles. It may behave as an inverse agonist, suppressing basal activity, a full agonist, maximally activating the pathway, a partial agonist, promoting submaximal activity even at saturating concentrations, or a neutral antagonist, having no effect on basal signaling, but blocking the binding of other orthosteric ligands. The efficacy profile of a ligand may differ for different signaling pathways. Finally, the functional response to an orthosteric ligand can be modulated allosterically by other (allosteric) ligands, protons, ions, lipids, peptides and proteins, including other GPCRs. This remarkable functional versatility is due in part to the dynamic character of GPCRs. Understanding how GPCRs work requires both high-resolution structures and approaches to characterize protein dynamics such as Nuclear Magnetic Resonance Spectroscopy (NMR) and Electron Paramagnetic Resonance Spectroscopy (EPR).
Specific Aims i nclude:
Aim 1. Develop methods and experimental tools for applying NMR and EPR spectroscopy to characterize the conformational dynamics of the 22AR.
Aim 2. Examine effect of ligands from different efficacy and affinity classes on 22AR structure and dynamics.
Aim 3. Examine the effect of oligomerization on 22AR structure and dynamics.
Aim 4. Determine the high-resolution structure of the 22AR-arrestin complex.

Public Health Relevance

The goal of this proposal is to determine the mechanism by which G protein coupled receptors (GPCRs) respond to hormones and neurotransmitters, and modify the function of cells. This information will facilitate the process of drug discovery for GPCRs, which are the largest family of membrane proteins in the human genome. Drugs acting on GPCRs can have an impact on a broad spectrum of diseases including: cardiovascular disease, pulmonary disease, inflammation, diabetes and obesity, behavioral disorders and Alzheimer's disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS028471-25
Application #
8819152
Study Section
Special Emphasis Panel (ZRG1-CB-P (02))
Program Officer
Stewart, Randall R
Project Start
1990-04-01
Project End
2017-01-31
Budget Start
2015-02-01
Budget End
2016-01-31
Support Year
25
Fiscal Year
2015
Total Cost
$604,797
Indirect Cost
$218,822
Name
Stanford University
Department
Neurology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304
Masureel, Matthieu; Zou, Yaozhong; Picard, Louis-Philippe et al. (2018) Structural insights into binding specificity, efficacy and bias of a ?2AR partial agonist. Nat Chem Biol 14:1059-1066
Das, Manabendra; Du, Yang; Mortensen, Jonas S et al. (2017) Butane-1,2,3,4-tetraol-based amphiphilic stereoisomers for membrane protein study: importance of chirality in the linker region. Chem Sci 8:1169-1177
Manglik, Aashish; Kobilka, Brian K; Steyaert, Jan (2017) Nanobodies to Study G Protein-Coupled Receptor Structure and Function. Annu Rev Pharmacol Toxicol 57:19-37
Hussain, Hazrat; Du, Yang; Tikhonova, Elena et al. (2017) Resorcinarene-Based Facial Glycosides: Implication of Detergent Flexibility on Membrane-Protein Stability. Chemistry 23:6724-6729
Liu, Xiangyu; Ahn, Seungkirl; Kahsai, Alem W et al. (2017) Mechanism of intracellular allosteric ?2AR antagonist revealed by X-ray crystal structure. Nature 548:480-484
Komolov, Konstantin E; Du, Yang; Duc, Nguyen Minh et al. (2017) Structural and Functional Analysis of a ?2-Adrenergic Receptor Complex with GRK5. Cell 169:407-421.e16
Ehsan, Muhammad; Ghani, Lubna; Du, Yang et al. (2017) New penta-saccharide-bearing tripod amphiphiles for membrane protein structure studies. Analyst 142:3889-3898
Das, Manabendra; Du, Yang; Ribeiro, Orquidea et al. (2017) Conformationally Preorganized Diastereomeric Norbornane-Based Maltosides for Membrane Protein Study: Implications of Detergent Kink for Micellar Properties. J Am Chem Soc 139:3072-3081
Gregorio, G Glenn; Masureel, Matthieu; Hilger, Daniel et al. (2017) Single-molecule analysis of ligand efficacy in ?2AR-G-protein activation. Nature 547:68-73
Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S et al. (2016) Isomeric Detergent Comparison for Membrane Protein Stability: Importance of Inter-Alkyl-Chain Distance and Alkyl Chain Length. Chembiochem 17:2334-2339

Showing the most recent 10 out of 96 publications