Parkinson's disease (PD) is the second most common neurodegenerative disorder, afflicting as many as one million Americans. The core psychomotor symptoms of the disease are attributable to the degeneration of dopaminergic neurons innervating the striatum. Treatment strategies for PD patients are limited, making it imperative that we gain a better understanding of how DA - and its loss in PD - shapes striatal function. There are profound experimental obstacles that have prevented us from gaining the kind of conceptual foothold we need to make real a translational impact for PD patients. Two critical obstacles are striatal cellular heterogeneity and the inaccessibility of the small, spiny dendrites of MSNs - the principal site of DA modulation - to experimental interrogation. In the last grant period, we have developed approaches necessary to overcome these obstacles. To overcome cellular heterogeneity, we have taken advantage of Bacterial Artificial Chromosome (BAC) transgenic mice in which D1 or D2 receptor-expressing MSNs are labeled with enhanced green fluorescent protein (eGFP). These mice have enabled electrophysiological study of the functional properties of identified MSNs in tissue slices, providing unprecedented insights into how these two principal cell types differ and adapt in PD models. To overcome the inaccessibility of MSN dendrites to conventional patch clamp techniques, we have gained expertise in two- photon laser scanning microscopy (2PLSM) and 2P laser uncaging (2PLU), which make even the fine distal dendrites of MSNs accessible to structural and functional study, creating a window into the striatal adaptations in PD. The studies proposed in this revised renewal application marshal these and other powerful new tools to attack fundamental gaps in our understanding of the striatal pathophysiology in PD. We propose three specific aims that build upon the results obtained in the last funding period: 1) To characterize intrinsic ionic mechanisms governing dendritic excitability and synaptic integration in striatal medium spiny neurons (MSNs). Our central hypothesis is that MSN dendrites are invested with Ca2+ and K+ channels that govern short-term processing of synaptic inputs and long-term changes in synaptic strength;2) To characterize the signaling mechanisms underlying the induction and expression of synaptic plasticity in MSNs. Our central hypothesis is that DA receptor signaling cascades are critical to the induction of bidirectional, Hebbian plasticity at corticostriatal glutamatergic synapses;3) To characterize MSN somatodendritic adaptations in animal models of Parkinson's disease. Our central hypothesis is that dysregulation of dendritic excitability and synaptic plasticity following the loss of DA triggers cell-type homeostatic adaptations in MSNs that are responsible for pathological activity patterns and motor deficits in PD. The insights gained from this work should promote the development of novel and powerful therapeutic strategies for PD.

Public Health Relevance

Parkinson's disease is a devastating neurodegenerative disease that afflicts over a million Americans. This proposal marshals powerful new technologies that will provide a much clearer picture of how the disease changes key brain regions and how these changes might be corrected. Therapeutic strategies based upon insights gained with these tools during the last grant period already have been tested in preclinical studies and yielded encouraging results, providing a strong motivation for continued study.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Sensorimotor Integration Study Section (SMI)
Program Officer
Sieber, Beth-Anne
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Northwestern University at Chicago
Schools of Medicine
United States
Zip Code
Plotkin, Joshua L; Day, Michelle; Peterson, Jayms D et al. (2014) Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington's disease. Neuron 83:178-88
Surmeier, D James; Graves, Steven M; Shen, Weixing (2014) Dopaminergic modulation of striatal networks in health and Parkinson's disease. Curr Opin Neurobiol 29:109-17
Fieblinger, Tim; Graves, Steven M; Sebel, Luke E et al. (2014) Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia. Nat Commun 5:5316
Tan, Chan Lek; Plotkin, Joshua L; Veno, Morten T et al. (2013) MicroRNA-128 governs neuronal excitability and motor behavior in mice. Science 342:1254-8
Plotkin, Joshua L; Shen, Weixing; Rafalovich, Igor et al. (2013) Regulation of dendritic calcium release in striatal spiny projection neurons. J Neurophysiol 110:2325-36
Kress, Geraldine J; Yamawaki, Naoki; Wokosin, David L et al. (2013) Convergent cortical innervation of striatal projection neurons. Nat Neurosci 16:665-7
Glajch, Kelly E; Fleming, Sheila M; Surmeier, D James et al. (2012) Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson's disease. Behav Brain Res 230:309-16
Plotkin, Joshua L; Day, Michelle; Surmeier, D James (2011) Synaptically driven state transitions in distal dendrites of striatal spiny neurons. Nat Neurosci 14:881-8
Ding, Jun B; Guzman, Jaime N; Peterson, Jayms D et al. (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67:294-307
Bateup, Helen S; Santini, Emanuela; Shen, Weixing et al. (2010) Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc Natl Acad Sci U S A 107:14845-50

Showing the most recent 10 out of 59 publications