It has been estimated that approximately 15% of all mutations that lead to human genetic disease alter mRNA splicing. Our studies have focused on familial dysautonomia (FD), a hereditary sensory and autonomic neuropathy that is caused by a splice mutation in the IKBKAP gene. The mutation results in variable skipping of exon 20 in IKBKAP mRNA, which leads to a tissue-specific reduction of IKAP protein. The fact that FD patients retain the capacity to make both normal mRNA and protein offers an exciting, direct approach towards the development of therapies aimed at increasing levels of cellular IKAP via splicing modification. We have shown that kinetin, a plant cytokinin, enhances exon 20 inclusion and dramatically increases the amount of wild-type IKBKAP mRNA and IKAP protein in FD cells. Recent studies performed in our transgenic mouse models and in human FD carriers show that kinetin can improve IKBKAP splicing in vivo, setting the stage for clinical trials in FD patients. To better understand the role of the IKBKAP gene in vivo, an Ikbkap knock-out mouse model has been created. We demonstrate that deletion of mouse Ikbkap results in failure of embryogenesis, proving for the first time a crucial role for IKAP during mammalian development. Further, to replicate the tissue-specific splicing pattern found in FD, we have generated several transgenic mouse lines that carry either the human wild-type or mutant IKBKAP transgene. Mice carrying the human mutant IKBKAP transgene show a similar tissue-specific splicing pattern to that observed in FD patients, proving conservation of splicing mechanism. Importantly, introduction of the human wild-type and FD transgene into the Ikbkap knock-out line can completely rescue the lethal phenotype. Armed with these unique mouse models and the knowledge that we can directly target the splicing defect, we are now poised to characterize the transcriptional pathways that are disrupted in FD and to identify and target the genes that govern tissue-specific splicing. In the long-term these studies will contribute to the fundamental understanding of normal neuronal development as well as the regulation of disease- associated and tissue-specific splicing. Most importantly, however, they will lead to new targets for the development of therapeutics for FD and other diseases caused by aberrant regulation of mRNA splicing.

Public Health Relevance

Familial Dysautonomia is a severe hereditary sensory and autonomic neuropathy that is caused by a mutations in the IKBKAP gene. The major mutation causes an mRNA splicing error that leads to a tissue-specific reduction of IKAP protein. We have generated several mouse models for FD, and studying these models will enable us to determine which genes are crucial for nervous system development.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS036326-16
Application #
8655558
Study Section
Developmental Brain Disorders Study Section (DBD)
Program Officer
Gwinn, Katrina
Project Start
1997-04-15
Project End
2015-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
16
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02199
Morini, Elisabetta; Dietrich, Paula; Salani, Monica et al. (2016) Sensory and autonomic deficits in a new humanized mouse model of familial dysautonomia. Hum Mol Genet 25:1116-28
Axelrod, Felicia B; Liebes, Leonard; Gold-Von Simson, Gabrielle et al. (2011) Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia. Pediatr Res 70:480-3
Shetty, Ranjit S; Gallagher, Cary S; Chen, Yei-Tsung et al. (2011) Specific correction of a splice defect in brain by nutritional supplementation. Hum Mol Genet 20:4093-101
Hims, Matthew M; Shetty, Ranjit S; Pickel, James et al. (2007) A humanized IKBKAP transgenic mouse models a tissue-specific human splicing defect. Genomics 90:389-96
Cuajungco, Math P; Leyne, Maire; Mull, James et al. (2003) Tissue-specific reduction in splicing efficiency of IKBKAP due to the major mutation associated with familial dysautonomia. Am J Hum Genet 72:749-58
Fini, M Elizabeth; Slaugenhaupt, Susan A (2002) Enzymatic mechanisms in corneal ulceration with specific reference to familial dysautonomia: potential for genetic approaches. Adv Exp Med Biol 506:629-39
Slaugenhaupt, Susan A (2002) Genetics of familial dysautonomia. Tissue-specific expression of a splicing mutation in the IKBKAP gene. Clin Auton Res 12 Suppl 1:I15-9
Slaugenhaupt, S A; Blumenfeld, A; Gill, S P et al. (2001) Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68:598-605
Cuajungco, M P; Leyne, M; Mull, J et al. (2001) Cloning, characterization, and genomic structure of the mouse Ikbkap gene. DNA Cell Biol 20:579-86
Chadwick, B P; Leyne, M; Gill, S et al. (2000) Cloning, mapping, and expression of a novel brain-specific transcript in the familial dysautonomia candidate region on chromosome 9q31. Mamm Genome 11:81-3

Showing the most recent 10 out of 14 publications