The targeting of neurotransmitter receptors to synapses is essential for efficient synaptic transmission and plays an important role in the regulation of synaptic plasticity in the brain. We have identified several PDZ domain-containing proteins that specifically interact with AMPA receptors, the major excitatory neurotransmitter receptors in the central nervous system. These AMPA receptor interacting proteins are critical for the regulation of the membrane trafficking of AMPA receptors and synaptic plasticity. Several of these proteins, including GRIP1 and GRIP2 (Glutamate Receptor Interacting Proteins) and PICK1 (Protein Interactor with C Kinase), specifically interact with the C-terminal domains of the AMPA receptor GluR 2, 3 and 4c subunits. In addition, we have found that these interactions are dynamically regulated by protein phosphorylation of the receptor subunits. In this research proposal we plan to use several complementary approaches to further characterize the structure and function of PICK1 and GRIP1/2 and determine their roles in AMPA receptor synaptic targeting, synaptic plasticity and behavior. First, we have identified several novel proteins that interact with PICK1 and GRIP1/2 to form PDZ domain-based receptor complexes. We will establish the roles of these new PICK1/GRIP interacting proteins, several of which are implicated in neuropsychiatric diseases, in the regulation of AMPA receptor trafficking, synaptic transmission and plasticity. Second, we will determine how both phosphorylation and a novel regulatory mechanism, palmitoylation, dynamically regulate the PDZ domain- based receptor complex, and how these processes regulate receptor trafficking and synaptic plasticity. In complementary experiments, we will use PICK1 and GRIP1/2 knockout mice, phosphorylation site mutant knockin mice, and knockout mice of selected PICK1 and GRIP1/2 interacting proteins to elucidate the role of PDZ domain-based receptor complexes in several forms of plasticity in the hippocampus, cerebellum, somatosensory cortex and the amygdala. Finally, we will analyze behavioral phenotypes, including spatial and motor learning and fear conditioning and extinction of these knockout and knockin mice to determine the role of these regulatory mechanisms in higher brain processes.

Public Health Relevance

This research will elucidate basic molecular mechanisms that regulate synaptic transmission and plasticity in the brain but it also has broad relevance for many neurological and psychiatric diseases. Dysfunction of synaptic transmission and synaptic plasticity underlies many neurological and psychiatric disorders. This research may therefore reveal novel targets for the development of therapeutic treatments for several brain disorders including pain, drug addiction, schizophrenia, autism, and Alzheimer's and Parkinson's disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS036715-15
Application #
8402812
Study Section
Synapses, Cytoskeleton and Trafficking Study Section (SYN)
Program Officer
Whittemore, Vicky R
Project Start
1997-08-01
Project End
2016-01-31
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
15
Fiscal Year
2013
Total Cost
$496,146
Indirect Cost
$193,618
Name
Johns Hopkins University
Department
Neurosciences
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Olivito, Laura; Saccone, Paola; Perri, Valentina et al. (2016) Phosphorylation of the AMPA receptor GluA1 subunit regulates memory load capacity. Brain Struct Funct 221:591-603
Zeng, Menglong; Shang, Yuan; Araki, Yoichi et al. (2016) Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity. Cell 166:1163-1175.e12
Lagerlöf, Olof; Slocomb, Julia E; Hong, Ingie et al. (2016) The nutrient sensor OGT in PVN neurons regulates feeding. Science 351:1293-6
Gu, Yi; Huganir, Richard L (2016) Identification of the SNARE complex mediating the exocytosis of NMDA receptors. Proc Natl Acad Sci U S A 113:12280-12285
Tracy, Tara E; Sohn, Peter Dongmin; Minami, S Sakura et al. (2016) Acetylated Tau Obstructs KIBRA-Mediated Signaling in Synaptic Plasticity and Promotes Tauopathy-Related Memory Loss. Neuron 90:245-60
Nomura, J; Jaaro-Peled, H; Lewis, E et al. (2016) Role for neonatal D-serine signaling: prevention of physiological and behavioral deficits in adult Pick1 knockout mice. Mol Psychiatry 21:386-93
Goldschmidt, Hana L; Tu-Sekine, Becky; Volk, Lenora et al. (2016) DGKθ Catalytic Activity Is Required for Efficient Recycling of Presynaptic Vesicles at Excitatory Synapses. Cell Rep 14:200-7
Gu, Yi; Chiu, Shu-Ling; Liu, Bian et al. (2016) Differential vesicular sorting of AMPA and GABAA receptors. Proc Natl Acad Sci U S A 113:E922-31
Tan, Han L; Queenan, Bridget N; Huganir, Richard L (2015) GRIP1 is required for homeostatic regulation of AMPAR trafficking. Proc Natl Acad Sci U S A 112:10026-31
Meye, Frank J; Valentinova, Kristina; Lecca, Salvatore et al. (2015) Cocaine-evoked negative symptoms require AMPA receptor trafficking in the lateral habenula. Nat Neurosci 18:376-8

Showing the most recent 10 out of 76 publications