The primary goal of this project is to study, using human induced-nociceptor neurons, the cellular mechanisms contributing to peripheral sensory diseases that cause pain and small fiber neuropathy. The induced-nociceptors (i-nociceptors) will be generated by directly converting (transdifferentiating) a somatic cell (in this case fibroblasts) into a cell with a different and distinct lineage (in this case, nociceptor neurons). e have established a protocol for efficiently transdifferentiating mouse and human fibroblasts into nociceptors by expression of a small set of defined transcription factors. These i-nociceptors have the morphology and marker expression patterns expected of adult nociceptors. The cells also respond with a robust calcium influx to capsaicin a TRPV1 agonist, mustard oil, a TRPA1 agonist and a ?-methylene ATP, a P2X3 agonist. The neurons have, moreover, the broad action potentials typical of nociceptors, which are contributed to by a tetrodotoxin-resistant sodium current and express transcripts for quintessential nocicepter markers Nav1.7, Nav1.8, TRPV1, and P2X3. The induced neurons have, therefore, sufficient features of native mature nociceptors to enable us to model key aspects of nociceptive transduction, membrane excitability and neuropathy. We now plan to characterize the function and expression profiles of human i-nociceptors. We will also use newly developed gene-targeting techniques to introduce gain- and loss-of-function mutations of Nav1.7 known from human genetic studies to produce pain or congenital analgesia into mouse and human i-nociceptors. These nociceptors will be compared with i-nociceptors derived from patients with inherited erythromelalgia (IEM) due to Nav1.7 mutations. Furthermore, we will compare i-nociceptors that are isogenic except for a defined Nav1.7 mutation, by correcting the mutation in a patient-derived iPSC line. We anticipate measuring a clear hyperexcitability phenotype in nociceptors with natural or engineered Nav1.7 gain-of-function mutations, and a loss of this phenotype when the mutation is corrected. Finally, we will use human i-nociceptors to study how a cancer chemotherapeutic agent oxaliplatin may cause pain and neuropathy. The proposal will enable exploitation of human nociceptors to study human disease conditions and screen for novel treatment strategies.

Public Health Relevance

The goal of this grant is to generate in a dish, those human sensory neurons that initiate pain, in order to identify the mechanisms responsible for peripheral nervous system sensory diseases. The pain sensory neurons will be converted from fibroblasts by changing the set of gene instructions that determine cell fate, converting a cell from one determined fate (fibroblast) to another (pain sensory neuron). The function of the induced human sensory neurons will be fully- characterized. This will provide a novel and unique opportunity to study the function of human pain neurons at a molecular and cellular level, and to determine what changes occur in sensory neurons derived from patients with specific diseases, and how. Furthermore, we will create mutations in genes known to cause pain, and explore the effects of this on human and mouse sensory neuron excitability and growth. The approach will enable detailed analysis of the cellular biology of pain and small fiber neuropathy, and can be used to screen for new treatments.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Oshinsky, Michael L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Children's Hospital Boston
United States
Zip Code
Painter, Michio W; Brosius Lutz, Amanda; Cheng, Yung-Chih et al. (2014) Diminished Schwann cell repair responses underlie age-associated impaired axonal regeneration. Neuron 83:331-43
Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C et al. (2014) ATF3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation. Proc Natl Acad Sci U S A 111:1622-7
Wainger, Brian J; Kiskinis, Evangelos; Mellin, Cassidy et al. (2014) Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep 7:1-11
Hanada, Toshikatsu; Weitzer, Stefan; Mair, Barbara et al. (2013) CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature 495:474-80
Bruehl, Stephen; Apkarian, A Vania; Ballantyne, Jane C et al. (2013) Personalized medicine and opioid analgesic prescribing for chronic pain: opportunities and challenges. J Pain 14:103-13
von Hehn, Christian A; Baron, Ralf; Woolf, Clifford J (2012) Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 73:638-52
Sisignano, Marco; Park, Chul-Kyu; Angioni, Carlo et al. (2012) 5,6-EET is released upon neuronal activity and induces mechanical pain hypersensitivity via TRPA1 on central afferent terminals. J Neurosci 32:6364-72
Ma, Chi Him Eddie; Omura, Takao; Cobos, Enrique J et al. (2011) Accelerating axonal growth promotes motor recovery after peripheral nerve injury in mice. J Clin Invest 121:4332-47
Woolf, Clifford J (2011) Central sensitization: implications for the diagnosis and treatment of pain. Pain 152:S2-15
Son, Esther Y; Ichida, Justin K; Wainger, Brian J et al. (2011) Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9:205-18

Showing the most recent 10 out of 69 publications