Recent studies suggest that the majority of HIV infected patients develop mild or asymptomatic neurocognitive dysfunction despite being aviremic on antiretroviral therapy. Coupled with the observation that the viral burden in the brain may be much larger than previously anticipated, the possibility that small amounts of viral products over extended periods of time may directly cause neuronal dysfunction needs to be considered. One of these viral proteins, Tat is particularly attractive since its production and release from HIV-infected cells is not impacted by currently available antiretroviral agents. Substantial amount of data from our laboratory over the last 15 years clearly shows that Tat interacts directly with the NMDA receptors to cause neuronal injury. Over the previous five years of funding we further characterized the mechanisms of Tat-mediated neuronal injury and discovered that the mechanism of excitation of the NMDA receptor by Tat is unlike any other known agonist. To further characterize these interactions we will use a combination of in vitro and in vivo models to determine the role of Tat-NMDA receptor interactions in mediating synaptodendritic injury and using molecular studies including crystallography we will determine the exact molecular basis of these protein-protein interactions. We anticipate that these studies will not only have important implications for understanding the pathophysiology of HIV associated neurocognitive disorders but will also advance our understanding of the physiological and pathological states in which the NMDA receptor plays a role. The grant application will examine three specific aims:
Aim 1 : To characterize the post-translational modifications and essential residues of Tat that mediates its neurotoxic properties.
Aim 2 : To determine the role of Tat-NMDA receptor interaction in mediating synaptodendritic injury Aim 3: To determine the structural basis of the interactions between Tat and the NMDA receptor.

Public Health Relevance

Currently, there is no available treatment for neurocognitive impairment in patients with HIV infection who are aviremic on antiretroviral therapy. We will study the mechanisms by which HIV proteins such as Tat can cause injury to neurons. The mechanisms by which this molecule interacts with cell surface receptors on neurons will be characterized. This would eventually lead to a rational design of new molecules that may block receptor action.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS039253-15
Application #
8469917
Study Section
NeuroAIDS and other End-Organ Diseases Study Section (NAED)
Program Officer
Wong, May
Project Start
1999-07-01
Project End
2015-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
15
Fiscal Year
2013
Total Cost
$339,270
Indirect Cost
$132,398
Name
Johns Hopkins University
Department
Neurology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Uzasci, Lerna; Auh, Sungyoung; Cotter, Robert J et al. (2016) Mass spectrometric phosphoproteome analysis of HIV-infected brain reveals novel phosphorylation sites and differential phosphorylation patterns. Proteomics Clin Appl 10:126-35
Uzasci, Lerna; Bianchet, Mario A; Cotter, Robert J et al. (2014) Identification of nitrated immunoglobulin variable regions in the HIV-infected human brain: implications in HIV infection and immune response. J Proteome Res 13:1614-23
Lee, Myoung-Hwa; Amin, Niranjana D; Venkatesan, Arun et al. (2013) Impaired neurogenesis and neurite outgrowth in an HIV-gp120 transgenic model is reversed by exercise via BDNF production and Cdk5 regulation. J Neurovirol 19:418-31
Linde, Michael E; Colquhoun, David R; Ubaida Mohien, Ceereena et al. (2013) The conserved set of host proteins incorporated into HIV-1 virions suggests a common egress pathway in multiple cell types. J Proteome Res 12:2045-54
Uzasci, Lerna; Nath, Avindra; Cotter, Robert (2013) Oxidative stress and the HIV-infected brain proteome. J Neuroimmune Pharmacol 8:1167-80
Johnson, Tory P; Patel, Karan; Johnson, Kory R et al. (2013) Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proc Natl Acad Sci U S A 110:13588-93
Vasta, Gerardo R; Ahmed, Hafiz; Bianchet, Mario A et al. (2012) Diversity in recognition of glycans by F-type lectins and galectins: molecular, structural, and biophysical aspects. Ann N Y Acad Sci 1253:E14-26
Rumbaugh, Jeffrey A; Bachani, Muznabanu; Li, Wenxue et al. (2012) HIV immune complexes prevent excitotoxicity by interaction with NMDA receptors. Neurobiol Dis 49C:169-176
Li, Guan-Han; Li, Wenxue; Mumper, Russell J et al. (2012) Molecular mechanisms in the dramatic enhancement of HIV-1 Tat transduction by cationic liposomes. FASEB J 26:2824-34
Bora, Adriana; Anderson, Carol; Bachani, Muznabanu et al. (2012) Robust Two-Dimensional Separation of Intact Proteins for Bottom-Up Tandem Mass Spectrometry of the Human CSF Proteome. J Proteome Res :

Showing the most recent 10 out of 46 publications