This grant proposal addresses the role of Rip2 in Huntington's disease (HD) pathology. Rip2 modulates a number of activities of relevance to disease pathogenesis in HD. Rip2 activates caspase-1, as well as regulates a number of other critical intracellular signaling pathways. By analyzing brains from R6/2 transgenic mice that model HD, we showed that levels of Rip2 increase progressively as the animals'condition worsens. We observed parallel trends in post mortem brain samples from patients with increasingly advanced HD.
In Specific Aim 1, we will repeat our experiments using YAC128 mice, animals expressing the entire mutant human HD gene and not just a fragment thereof. Besides determining the time course of Rip2 expression, we will investigate consequent changes in the molecular and cellular biology of HD mice. Measurements of the enzyme activity of caspases and the posttranslational modifications of Bcl-2-family proteins will be compared between HD mice and HD mice in which the Rip2 gene has been ablated. Finally, we will measure disease endpoints, i.e., body weight, motor control, time of disease onset, and mortality, during the course of neurodegeneration.
Specific Aims 2 and 3 more directly investigate the molecular mechanism by which Rip2 protein modulates neuronal cell death.
Aim 2 concerns changes in Rip2 protein's intracellular localization consequent upon its posttranslational modification by small ubiquitin-like modifier (SUMO). We will measure the relative extent of sumoylation of Rip2 from nuclear and cytoplasmic fractions of HD and healthy brain tissue. Using mass spectrometry, we will identify the specific amino acid residues within Rip2 which become sumoylated. We will mutate these residues to determine if sumoylation is required for nuclear localization of Rip2 and mutant Htt-mediated cell death.
Aim 3 concerns the role of Rip2 in the epigenetic gene regulation in HD. We will study the regulation of epigenetic pathways as a putative mechanism by which Rip2 affects HD. Finally, we will determine if posttranslational modification of Rip2 is required for epigenetic gene regulation and subsequent neuronal death in HD using HD mice lacking expression of Rip2.

Public Health Relevance

Our experimental agenda investigates several molecular pathways that modulate the rate at which Huntington's disease progresses. We are most interested in caspase-1, an enzyme that stimulates neuronal death during HD. We will use methods of mouse genetics and molecular biology to determine what proteins modulate caspase-1, what molecular events ensue from its activation, and how these physiological changes affect HD.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-MDCN-E (03))
Program Officer
Sutherland, Margaret L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Medicine
United States
Zip Code
Schurdak, Mark E; Pei, Fen; Lezon, Timothy R et al. (2018) A Quantitative Systems Pharmacology Approach to Infer Pathways Involved in Complex Disease Phenotypes. Methods Mol Biol 1787:207-222
Pei, Fen; Li, Hongchun; Henderson, Mark J et al. (2017) Connecting Neuronal Cell Protective Pathways and Drug Combinations in a Huntington's Disease Model through the Application of Quantitative Systems Pharmacology. Sci Rep 7:17803
Suofu, Yalikun; Li, Wei; Jean-Alphonse, Frédéric G et al. (2017) Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci U S A 114:E7997-E8006
Khattar, Nicolas K; Yablonska, Svitlana; Baranov, Sergei V et al. (2016) Isolation of functionally active and highly purified neuronal mitochondria from human cortex. J Neurosci Methods 263:1-6
Kozai, Takashi D Y; Du, Zhanhong; Gugel, Zhannetta V et al. (2015) Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays. J Neurosci Methods 242:15-40
Kozai, Takashi D Y; Li, Xia; Bodily, Lance M et al. (2014) Effects of caspase-1 knockout on chronic neural recording quality and longevity: insight into cellular and molecular mechanisms of the reactive tissue response. Biomaterials 35:9620-34
Zhang, Yi; Cook, Anna; Kim, Jinho et al. (2013) Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 55:26-35
Zhang, Yi; Wang, Xin; Baranov, Sergei V et al. (2011) Dipyrone inhibits neuronal cell death and diminishes hypoxic/ischemic brain injury. Neurosurgery 69:942-56
Wang, Xin; Sirianni, Ana; Pei, Zhijuan et al. (2011) The melatonin MT1 receptor axis modulates mutant Huntingtin-mediated toxicity. J Neurosci 31:14496-507
Yanamadala, Vijay; Friedlander, Robert M (2010) Complement in neuroprotection and neurodegeneration. Trends Mol Med 16:69-76

Showing the most recent 10 out of 19 publications