Long-term modifications in synaptic efficacy are implicated in learning and memory;dysfunction of this plasticity is implicated in a variety of neurodevelopmental and neuropsychiatric disorders. The long-term goal of this project is to elucidate the supramolecular organization of the postsynaptic density (PSD), which plays a central role in synaptic signal processing. This information may ultimately prove very useful in designing novel approaches to the prevention or treatment of brain disorders. The proposal for this funding cycle includes three specific aims:
Aim 1 is to develop new electron microscopic tools to study the ultrastructure of synapses, and to use these tools to study abnormalities of the PSD in mouse models of autism and schizophrenia.
Aim 2 is to examine how actin filaments attach to the PSD, to study the organization of two isoforms of a protein that links actin to the PSD, and to study two PSD-associated enzymes that control Rho-family proteins (molecular switches that modulate actin remodeling).
Aim 3 is to study the alignment of presynaptic release sites with postsynaptic receptors, and to explore possible disruptions in synaptic structure and receptor expression in mice that have mutations in synaptic adhesion molecules.

Public Health Relevance

Developmental disability, autism, and severe psychiatric disease represent a substantial drain on our country's resources, and a terrible human cost. By examining the structure of synapses in rodent brain, this research may provide a better understanding of the biological basis of these disorders, potentially leading to new approaches to prevention or treatment.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Synapses, Cytoskeleton and Trafficking Study Section (SYN)
Program Officer
Talley, Edmund M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Schools of Medicine
Chapel Hill
United States
Zip Code
Wang, Xiaoming; Bey, Alexandra L; Katz, Brittany M et al. (2016) Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun 7:11459
Carstens, Kelly E; Phillips, Mary L; Pozzo-Miller, Lucas et al. (2016) Perineuronal Nets Suppress Plasticity of Excitatory Synapses on CA2 Pyramidal Neurons. J Neurosci 36:6312-20
Dosemeci, Ayse; Weinberg, Richard J; Reese, Thomas S et al. (2016) The Postsynaptic Density: There Is More than Meets the Eye. Front Synaptic Neurosci 8:23
Judson, Matthew C; Wallace, Michael L; Sidorov, Michael S et al. (2016) GABAergic Neuron-Specific Loss of Ube3a Causes Angelman Syndrome-Like EEG Abnormalities and Enhances Seizure Susceptibility. Neuron 90:56-69
Kim, Il Hwan; Rossi, Mark A; Aryal, Dipendra K et al. (2015) Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine. Nat Neurosci 18:883-91
Burette, Alain; Collman, Forrest; Micheva, Kristina D et al. (2015) Knowing a synapse when you see one. Front Neuroanat 9:100
Collman, Forrest; Buchanan, JoAnn; Phend, Kristen D et al. (2015) Mapping synapses by conjugate light-electron array tomography. J Neurosci 35:5792-807
Ehlen, J Christopher; Jones, Kelly A; Pinckney, Lennisha et al. (2015) Maternal Ube3a Loss Disrupts Sleep Homeostasis But Leaves Circadian Rhythmicity Largely Intact. J Neurosci 35:13587-98
Burette, Alain C; Phend, Kristen D; Burette, Susan et al. (2015) Organization of TNIK in dendritic spines. J Comp Neurol 523:1913-24
Jacob, Amanda L; Weinberg, Richard J (2015) The organization of AMPA receptor subunits at the postsynaptic membrane. Hippocampus 25:798-812

Showing the most recent 10 out of 38 publications