Temporal lobe epilepsy (TLE) is a prevalent, often drug-resistant form of epilepsy usually preceded by injury which progressively leads to the development of recurrent unprovoked seizures by a process known as epileptogenesis. The role of mitochondria in TLE is recently emerging;however whether and how mitochondrial functions contribute to TLE remains unknown. It is hypothesized that mitochondrial oxidative stress plays a key role in epileptogenesis. We seek to determine whether and how mitochondrial reactive oxygen species (ROS) contribute to epileptogenesis. Preliminary data suggests that mitochondrial oxidative stress occurs to varying extent throughout epileptogenesis in two chemoconvulsant models of epilepsy. Using a diversity of approaches including state-of-the-art mitochondrial redox techniques, mass spectrometry and continuous video-EEG monitoring in two chemoconvulsant animal models, the following specific aims will be examined.
Specific Aim 1 will determine the occurrence of mitochondrial oxidative stress during epileptogenesis and establish a cause-effect relationship between oxidative stress and epilepsy development.
Specific Aim 2 will determine how mitochondrial ROS contributes to epileptogenesis. Specifically the role of posttranslational oxidative modification of complex I and mitochondrial DNA damage and repair will be examined.
Specific Aim 3 will determine if pharmacological inhibition of mitochondrial oxidative stress can prevent epileptogenesis. These studies will establish a potential role of mitochondrial oxidative stress in epileptogenesis and suggest novel therapeutic approaches for modifying the progression of TLE.

Public Health Relevance

Temporal lobe epilepsy (TLE) is a prevalent form of acquired epilepsy often resistant to drugs and progressive in nature. Metabolic changes including mitochondrial dysfunction occur in TLE but how they contribute to its progression remains unknown. The goal of this project is to determine if a key function of mitochondria (reactive oxygen species) contributes to the development of epilepsy in animal models of TLE. Furthermore, the project will test the efficacy of drugs that are known to prevent mitochondrial dysfunction in TLE animal models.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BDCN-Y (04))
Program Officer
Whittemore, Vicky R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
Schools of Pharmacy
United States
Zip Code
Ryan, Kristen; Liang, Li-Ping; Rivard, Christopher et al. (2014) Temporal and spatial increase of reactive nitrogen species in the kainate model of temporal lobe epilepsy. Neurobiol Dis 64:8-15
Pearson, Jennifer N; Schulz, Kalynn M; Patel, Manisha (2014) Specific alterations in the performance of learning and memory tasks in models of chemoconvulsant-induced status epilepticus. Epilepsy Res 108:1032-40
Gano, Lindsey B; Patel, Manisha; Rho, Jong M (2014) Ketogenic diets, mitochondria, and neurological diseases. J Lipid Res 55:2211-28
Brooks-Kayal, Amy R; Bath, Kevin G; Berg, Anne T et al. (2013) Issues related to symptomatic and disease-modifying treatments affecting cognitive and neuropsychiatric comorbidities of epilepsy. Epilepsia 54 Suppl 4:44-60
Rowley, Shane; Patel, Manisha (2013) Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med 62:121-31
Liang, Li-Ping; Waldbaum, Simon; Rowley, Shane et al. (2012) Mitochondrial oxidative stress and epilepsy in SOD2 deficient mice: attenuation by a lipophilic metalloporphyrin. Neurobiol Dis 45:1068-76
Durazo, Shelley A; Kadam, Rajendra S; Drechsel, Derek et al. (2011) Brain mitochondrial drug delivery: influence of drug physicochemical properties. Pharm Res 28:2833-47
Cantu, David; Fulton, Ruth E; Drechsel, Derek A et al. (2011) Mitochondrial aconitase knockdown attenuates paraquat-induced dopaminergic cell death via decreased cellular metabolism and release of iron and H?O?. J Neurochem 118:79-92
Drechsel, Derek A; Patel, Manisha (2010) Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system. J Biol Chem 285:27850-8
Waldbaum, Simon; Liang, Li-Ping; Patel, Manisha (2010) Persistent impairment of mitochondrial and tissue redox status during lithium-pilocarpine-induced epileptogenesis. J Neurochem 115:1172-82

Showing the most recent 10 out of 29 publications