A key unresolved question in cognitive and systems neuroscience is how repeated exposure to perceptual stimuli results in reduced neuronal responses (repetition suppression, or RS) but more efficient and rapid behavioral responses (behavioral priming) to the same stimuli. We will use subdural electrocorticography (ECoG) to elucidate the fine temporal dynamics of cortical activation and repetition suppression (Specific Aim 1), as well as the dynamics of event-related functional interactions (Specific Aim 2), during visual object naming. We will use these dynamics to test key predictions of competing models of the neural mechanisms of RS and how these mechanisms relate to behavioral priming. More specifically, we will test the hypothesis that RS and behavioral priming can be better explained by an """"""""effective interaction"""""""" model in which behavioral priming arises from an increase in functional interactions between sites where RS is observed. For this purpose ECoG activation will be indexed by high frequency (gamma) oscillations, low frequency spectral perturbations, and ERPs. We will also use quantitative methods for measuring dynamic event-related causal interactions in gamma frequencies between ECoG recording sites, as well as other methods for analyzing integrative network activity. To further test our model (Specific Aim3), we will also use electrocortical stimulation mapping (ESM) to temporarily interfere with function at ECoG sites where RS and increased functional interactions were observed in Aims 1 and 2. We will test whether these transient functional """"""""lesions"""""""" during initial stimulus exposure not only interfere with RS and increased functional interactions during repeated stimulus exposure, but also interfere with priming of naming latencies for repeated stimuli. This will be done to test the hypothesis that the RS and functional interactions predicted by our model are causally linked to behavioral priming. This project is expected to provide new insights into the neural mechanisms underlying RS and its association with behavioral priming, which is a fundamental mechanism of implicit learning and memory based on neocortical function, in contrast to hippocampal-dependent explicit memory. These insights will inform studies in cognitive psychology and functional neuroimaging that use RS and priming to probe the neural substrates of normal cognition, as well as cognitive impairments associated with cortical dysfunction, e.g. in Alzheimer's dementia. In addition, the research is expected to have a clinical impact in the surgical management of epilepsy by improving ECoG techniques for functional mapping.

Public Health Relevance

The research plan will use EEG measures of human brain activity discovered in the previous funding period to investigate the mechanisms by which more exposure to perceptual stimuli result in reduced brain responses but more efficient and rapid behavioral responses to the same stimuli. To answer this question, we will study the temporal sequence by which brain areas are activated and interact with each other when humans name novel versus repeated visual objects. This research could lead to better methods for mapping brain function in patients undergoing surgical treatment for epilepsy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS040596-12
Application #
8457057
Study Section
Cognitive Neuroscience Study Section (COG)
Program Officer
Gnadt, James W
Project Start
2000-07-01
Project End
2015-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
12
Fiscal Year
2013
Total Cost
$339,270
Indirect Cost
$132,398
Name
Johns Hopkins University
Department
Neurology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Kam, J W Y; Szczepanski, S M; Canolty, R T et al. (2018) Differential Sources for 2 Neural Signatures of Target Detection: An Electrocorticography Study. Cereb Cortex 28:9-20
Haller, Matar; Case, John; Crone, Nathan E et al. (2018) Persistent neuronal activity in human prefrontal cortex links perception and action. Nat Hum Behav 2:80-91
Riès, Stephanie K; Dhillon, Rummit K; Clarke, Alex et al. (2017) Spatiotemporal dynamics of word retrieval in speech production revealed by cortical high-frequency band activity. Proc Natl Acad Sci U S A 114:E4530-E4538
Nishida, Masaaki; Korzeniewska, Anna; Crone, Nathan E et al. (2017) Brain network dynamics in the human articulatory loop. Clin Neurophysiol 128:1473-1487
Fonken, Yvonne M; Rieger, Jochem W; Tzvi, Elinor et al. (2016) Frontal and motor cortex contributions to response inhibition: evidence from electrocorticography. J Neurophysiol 115:2224-36
Collard, Maxwell J; Fifer, Matthew S; Benz, Heather L et al. (2016) Cortical subnetwork dynamics during human language tasks. Neuroimage 135:261-72
Wang, Yujing; Fifer, Matthew S; Flinker, Adeen et al. (2016) Spatial-temporal functional mapping of language at the bedside with electrocorticography. Neurology 86:1181-9
Voytek, Bradley; Kayser, Andrew S; Badre, David et al. (2015) Oscillatory dynamics coordinating human frontal networks in support of goal maintenance. Nat Neurosci 18:1318-24
Flinker, Adeen; Korzeniewska, Anna; Shestyuk, Avgusta Y et al. (2015) Redefining the role of Broca's area in speech. Proc Natl Acad Sci U S A 112:2871-5
Ewen, Joshua B; Lakshmanan, Balaji M; Hallett, Mark et al. (2015) Dynamics of functional and effective connectivity within human cortical motor control networks. Clin Neurophysiol 126:987-96

Showing the most recent 10 out of 78 publications