including chemokines, cytokines, neurotrophic factors (NTF), reactive oxygen species, and viral proteins. Most of these factors stimulate changes in cell cycle regulatory machinery which determines cellular outcomes in non-neuronal systems. This has led us to propose that cell cycle proteins exhibit altered activity in neurons of patients with HIVE and this activity determines neuronal survival in response to the onslaught of macrophage secreted factors present in the extracellular milieu. We have observed increased inactivation of pRb by phosphorylation (ppRb) and increased cytoplasmic E2F1 in HIVE and SIVE. Using in vitro cultures, NTF and chemokines stimulate increased ppRb and cytoplasmic E2F1, but hydrogen peroxide does not. Because the changes in E2F1 distribution and pRb phosphorylation occur in cells responding to neurotrophic/survival signals, but not in cells responding to oxidative stress, we propose that neurons in the disease with increased ppRb and cytoplasmic E2F1 are """"""""surviving"""""""" neurons. This has led us to hypothesize that E2F1 and ppRb determine neuronal viability dependent on their subcellular distribution and interaction partners which is determined by the prevailing signaling cues in the extracellular milieu. The following aims are proposed: 1) To determine whether cytoplasmic E2F1 provides neuroprotection from HIVE-associated toxins, 2) To determine the role of MDMx in regulating cell survival and E2F1 subcellular localization in neurons responding to neuroprotective versus neurotoxic factors, and 3) To determine if post-translational modification of pRb in response to trophic factors occurs on different amino acids as compared to those residues modified in response to toxic factors. These studies will elucidate the role of cell cycle proteins in determining neuronal survival in HIVE and other neurodegenerative diseases with inflammatory components. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS041202-08
Application #
7352752
Study Section
Special Emphasis Panel (ZRG1-AARR-A (05))
Program Officer
Wong, May
Project Start
2001-02-01
Project End
2009-09-16
Budget Start
2008-02-01
Budget End
2009-09-16
Support Year
8
Fiscal Year
2008
Total Cost
$312,784
Indirect Cost
Name
University of Pennsylvania
Department
Pathology
Type
Schools of Dentistry
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Jackson, Dan P; Ting, Jenhao H; Pozniak, Paul D et al. (2018) Identification and characterization of two novel alternatively spliced E2F1 transcripts in the rat CNS. Mol Cell Neurosci 92:1-11
Gannon, Patrick J; Akay-Espinoza, Cagla; Yee, Alan C et al. (2017) HIV Protease Inhibitors Alter Amyloid Precursor Protein Processing via ?-Site Amyloid Precursor Protein Cleaving Enzyme-1 Translational Up-Regulation. Am J Pathol 187:91-109
Zyskind, Jacob W; Wang, Ying; Cho, Giyong et al. (2015) E2F1 in neurons is cleaved by calpain in an NMDA receptor-dependent manner in a model of HIV-induced neurotoxicity. J Neurochem 132:742-55
Colacurcio, Daniel J; Zyskind, Jacob W; Jordan-Sciutto, Kelly L et al. (2015) Caspase-dependent degradation of MDMx/MDM4 cell cycle regulatory protein in amyloid ?-induced neuronal damage. Neurosci Lett 609:182-8
Ting, Jenhao H; Marks, David R; Schleidt, Stephanie S et al. (2014) Targeted gene mutation of E2F1 evokes age-dependent synaptic disruption and behavioral deficits. J Neurochem 129:850-63
Colacurcio, Daniel J; Yeager, Alyssa; Kolson, Dennis L et al. (2013) Calpain-mediated degradation of MDMx/MDM4 contributes to HIV-induced neuronal damage. Mol Cell Neurosci 57:54-62
Wang, Ying; Zyskind, Jacob W; Colacurcio, Daniel J et al. (2012) Differential roles for caspase-mediated and calpain-mediated cell death in 1- and 3-week-old rat cortical cultures. Neuroreport 23:1052-8
Akay, C; Lindl, K A; Shyam, N et al. (2012) Activation status of integrated stress response pathways in neurones and astrocytes of HIV-associated neurocognitive disorders (HAND) cortex. Neuropathol Appl Neurobiol 38:175-200
Akay, C; Lindl, K A; Wang, Y et al. (2011) Site-specific hyperphosphorylation of pRb in HIV-induced neurotoxicity. Mol Cell Neurosci 47:154-65
White, Michael G; Wang, Ying; Akay, Cagla et al. (2011) Parallel high throughput neuronal toxicity assays demonstrate uncoupling between loss of mitochondrial membrane potential and neuronal damage in a model of HIV-induced neurodegeneration. Neurosci Res 70:220-9

Showing the most recent 10 out of 24 publications