The fatal mutation in Huntington's disease (HD) leads to an expanded glutamine repeat within the huntingtin protein which causes neuronal dysfunction typically followed by selective neurodegeneration especially within the striatum and cortex. These dysfunctions in neurons and circuits occur during the development of the disease phenotype, well before there is significant cell loss. The experiments in this application are designed to understand the functional changes that occur in specific populations of neurons during the progression of the HD phenotype and to uncover new targets and approaches for therapies. Our working hypothesis is that the most conspicuous cellular dysfunctions leading to pathology in HD result from a combination of cell- autonomous changes and cell-cell interactions. This two-hit hypothesis implies that mutation of the gene in the cell alone may not be sufficient to cause significant dysfunction;other changes have to occur to cause symptoms of the disease, and some of these include altered intercellular synaptic interactions. Previously, we examined changes in the striatum, the cortex and corticostriatal interactions, as the cortical input is one of the two major excitatory inputs to the striatum. However, the excitatory thalamic input to the striatum may be as important as the cortical input in the HD phenotype. It is presently unclear if both thalamostriatal and corticostriatal pathways contribute equally or differentially to alterations in striatal neurons.
Aim 1 will use optogenetics to specifically and separately activate striatal glutamatergic inputs to identified subpopulations of striatal neurons and determine their relative contribution to cellular alterations. Medium-sized spiny neurons of the direct and indirect striatal output pathways also display unique, selective and complex alterations as the HD phenotype progresses. These will affect their targets in globus pallidus and substantia nigra. To our knowledge, striatal outputs in HD have not been studied in any detail, especially in mouse models, yet they are extremely important because they determine how the basal ganglia influence the thalamus and cortex.
Aim 2 will specifically examine alterations in striatal output target structures while Aim 3 will manipulate striatal output pathwas differentially in an attempt to counter the imbalance of direct and indirect pathways as the disease progresses. Our studies use state-of-the-art optogenetic techniques to specifically activate or inhibit subclasses of neurons as well as genetic techniques to remove expression of the mutant huntingtin gene in subclasses of neurons. Together, the studies will provide the basis for novel and rational treatments for HD by delineating more restricted targets spatially and temporally and will be relevant for understanding other CAG triplet repeat diseases and neurodegenerative disorders.

Public Health Relevance

Huntington's disease is a fatal, genetic neurodegenerative disorder characterized by motor dysfunction, cognitive impairments and psychiatric disturbances for which no successful treatments exist. Genetic mouse models have been instrumental in understanding the dysfunctions underlying behavioral phenotypes, neuronal abnormalities and neurodegeneration and they permit examination of the progression of the disease, the discovery of cause-effect relationships and evaluation of potential therapies. This proposal uses state-of-the-art techniques to examine mechanisms that lead to dysfunction in specific neuronal populations during the progression of the phenotype and will uncover new targets for therapies to alleviate symptoms and slow the progression of this devastating genetic disorder.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
2R01NS041574-11
Application #
8394136
Study Section
Cell Death in Neurodegeneration Study Section (CDIN)
Program Officer
Sutherland, Margaret L
Project Start
2001-04-01
Project End
2017-05-31
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
11
Fiscal Year
2012
Total Cost
$341,294
Indirect Cost
$117,202
Name
University of California Los Angeles
Department
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Reidling, Jack C; Relaño-Ginés, Aroa; Holley, Sandra M et al. (2018) Human Neural Stem Cell Transplantation Rescues Functional Deficits in R6/2 and Q140 Huntington's Disease Mice. Stem Cell Reports 10:58-72
Estrada-Sánchez, Ana María; Castro, Daniel; Portillo-Ortiz, Kenia et al. (2018) Complete but not partial inhibition of glutamate transporters exacerbates cortical excitability in the R6/2 mouse model of Huntington's disease. CNS Neurosci Ther :
Donzis, Elissa J; Holley, Sandra M; Cepeda, Carlos et al. (2018) Neurophysiological Assessment of Huntington's Disease Model Mice. Methods Mol Biol 1780:163-177
Barry, Joshua; Akopian, Garnik; Cepeda, Carlos et al. (2018) Striatal Direct and Indirect Pathway Output Structures Are Differentially Altered in Mouse Models of Huntington's Disease. J Neurosci 38:4678-4694
Parievsky, Anna; Moore, Cindy; Kamdjou, Talia et al. (2017) Differential electrophysiological and morphological alterations of thalamostriatal and corticostriatal projections in the R6/2 mouse model of Huntington's disease. Neurobiol Dis 108:29-44
Lee, Kwang; Holley, Sandra M; Shobe, Justin L et al. (2017) Parvalbumin Interneurons Modulate Striatal Output and Enhance Performance during Associative Learning. Neuron 93:1451-1463.e4
Akopian, Garnik; Barry, Joshua; Cepeda, Carlos et al. (2016) Altered membrane properties and firing patterns of external globus pallidus neurons in the R6/2 mouse model of Huntington's disease. J Neurosci Res 94:1400-1410
Chen, Jane Y; Tran, Conny; Hwang, Lin et al. (2016) Partial Amelioration of Peripheral and Central Symptoms of Huntington's Disease via Modulation of Lipid Metabolism. J Huntingtons Dis 5:65-81
Indersmitten, Tim; Tran, Conny H; Cepeda, Carlos et al. (2015) Altered excitatory and inhibitory inputs to striatal medium-sized spiny neurons and cortical pyramidal neurons in the Q175 mouse model of Huntington's disease. J Neurophysiol 113:2953-66
Valenza, Marta; Chen, Jane Y; Di Paolo, Eleonora et al. (2015) Cholesterol-loaded nanoparticles ameliorate synaptic and cognitive function in Huntington's disease mice. EMBO Mol Med 7:1547-64

Showing the most recent 10 out of 52 publications