Epilepsy affects 50 million people worldwide, and 2.5 million in the United States alone. Fully 25 percent of those with recurrent seizures cannot be controlled by current medical or surgical treatment, and must resort to high doses of sedating medications or experimental therapy. Even when seizures are controlled, patients bear a significant burden of neurological and medication side effects. We propose to assemble an ensemble of accomplished investigators from the University of Pennsylvania, Georgia Institute of Technology, Children's Hospital of Philadelphia and IntelliMedix, a small start-up company through the GIT and Penn, in an intensive five to ten year effort to create a novel therapy for refractory epilepsy: an implantable closed loop system capable of predicting epileptic seizures prior to electrical and behavioral onset and triggering intervention to abort them before clinical expression. This diverse group of investigators represents multiple disciplines and areas of expertise including bioengineering, computer science, computational modeling of neuronal networks, image processing, clinical adult and pediatric epilepsy, cellular and molecular neuroscience, neurophysiology and neuropharmacology. The work will have three major thrusts: (1) Seizure Prediction: Developing and refining seizure prediction algorithms derived from data obtained from implanted biosensors in adults, children and in animal models of human epilepsy, capable of predicting seizures hours to minutes prior to electrical and clinical onset, (2) Mechanisms of ictogenesis: Unraveling the cellular, molecular, neurophysiologic and neuronal network mechanisms underlying the observed signal changes identified by these algorithms through in-vitro and in-vivo experiments in animals, recordings in human candidates for epilepsy surgery, and modeling these findings via computer simulations in order to refine predictive and intervention strategies, (3) Therapeutics: Developing strategies aimed at specific points in the """"""""ictogenic"""""""" process, as discovered above, consisting of electrophysiological and pharmacological interventions to disrupt the cascade of events which lead to seizures, in ways which do not interfere with normal brain function. This work will directly give rise to commercially viable intellectual property including: implantable biosensors, miniaturized biocompatible electrical stimulation and drug infusion hardware, stimulation paradigms, customized pharmacologic agents, customized software/hardware interfaces for signal acquisition, processing and synchronization with algorithms for driving therapeutic interventions. It is hoped that a closed loop seizure prediction and prevention device will be implementable in a 5-10 year period and will significantly improve the quality of life of individuals with epilepsy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS041811-03
Application #
6652106
Study Section
Special Emphasis Panel (ZRG1-BDCN-6 (02))
Program Officer
Fureman, Brandy E
Project Start
2001-08-15
Project End
2006-07-31
Budget Start
2003-08-01
Budget End
2004-07-31
Support Year
3
Fiscal Year
2003
Total Cost
$1,332,107
Indirect Cost
Name
University of Pennsylvania
Department
Neurology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Vanleer, Ann C; Blanco, Justin A; Wagenaar, Joost B et al. (2016) Millimeter-scale epileptiform spike propagation patterns and their relationship to seizures. J Neural Eng 13:026015
EscabĂ­, Monty A; Read, Heather L; Viventi, Jonathan et al. (2014) A high-density, high-channel count, multiplexed ?ECoG array for auditory-cortex recordings. J Neurophysiol 112:1566-83
Pearce, Allison; Wulsin, Drausin; Blanco, Justin A et al. (2013) Temporal changes of neocortical high-frequency oscillations in epilepsy. J Neurophysiol 110:1167-79
Malik, Saafan Z; Maronski, Margaret A; Dichter, Marc A et al. (2012) The use of specific AAV serotypes to stably transduce primary CNS neuron cultures. Methods Mol Biol 846:305-19
Bessaih, Thomas; de Yebenes, Esther Garcia; Kirkland, Kyle et al. (2012) Quantitative trait locus on distal chromosome 1 regulates the occurrence of spontaneous spike-wave discharges in DBA/2 mice. Epilepsia 53:1429-35
Chamberlain, Ann C; Viventi, Jonathan; Blanco, Justin A et al. (2011) Millimeter-scale epileptiform spike patterns and their relationship to seizures. Conf Proc IEEE Eng Med Biol Soc 2011:761-4
Viventi, Jonathan; Kim, Dae-Hyeong; Vigeland, Leif et al. (2011) Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 14:1599-605
Mani, Ram; Pollard, John; Dichter, Marc A (2011) Human clinical trails in antiepileptogenesis. Neurosci Lett 497:251-6
Wulsin, Drausin; Litt, Brian (2011) An unsupervised method for identifying regions that initiate seizures on intracranial EEG. Conf Proc IEEE Eng Med Biol Soc 2011:3091-4
Gupta, Jay R; Marsh, Eric D; Nieh, Horng-An Edward et al. (2011) Discrete gamma oscillations identify the seizure onset zone in some pediatric epilepsy patients. Conf Proc IEEE Eng Med Biol Soc 2011:3095-8

Showing the most recent 10 out of 51 publications