Batten disease represents a group of inherited neurodegenerative diseases also referred to as the Neuronal Ceroid Lipofuscinoses (NCLs). There are at least 9 genetically distinct forms of NCL and collectively, they are the most common pediatric neurodegenerative disease. The defining characteristic of the NCLs is the progressive accumulation of autofluorescent material in cells of the CNS and other tissues. Clinically, this group of pediatric neurodegenerative diseases typically present first with visual deficits followed by cognitive decline, intractable seizures, and premature death. Infantile Neuronal Ceroid Lipofuscinosis (INCL, Infantile Batten disease) is the most rapidly progressing form of NCL and is caused by the deficiency of the soluble lysosomal enzyme palmitoyl protein thioesterase-1 (PPT1). There is currently no effective therapy for INCL. In fact, pre-clinical experiments in the murine model of INCL using a variety of approaches such as gene therapy, small molecule drugs, and neuronal stem cells have resulted in minor biochemical and histological improvements with little or no increase in life span. However, we recently showed that CNS-directed gene therapy using an AAV2/5 vector resulted in a 50% increase in life span (INCL ~8mo, AAV2/5-INCL ~12mo). Interestingly, when bone marrow transplantation (BMT) was combined with AAV2/5 the median life span increased to ~18.5mo with a sustained improvement in motor function. These results are truly striking in light of the fact that BMT alone resulted in no detectable PPT1 activity in the brain and provided no biochemical, histological, or clinical improvements. It is becoming clear that a combination approach targeting different aspects of disease can dramatically improve the clinical outcomes of INCL. We have identified several disease characteristics of INCL that can be targeted simultaneously. This combination approach could represent the foundation of therapies that will provide meaningful clinical benefit for affected children. The goals of this proposal are to: 1) better understand the interaction of BMT and CNS-directed gene therapy in the treatment of INCL and, 2) determine the efficacy of combining disparate therapeutic approaches that target different aspects of INCL. We will accomplish these goals with the following Specific Aims: 1) We will more completely characterize the response of INCL mice to AAV2/5 and BMT and determine the mechanism of synergy between these disparate approaches. 2) We will determine the efficacy of therapeutic combinations that target different aspects of INCL.

Public Health Relevance

The goals of this research are to better understand the mechanism of synergy between AAV2/5- mediated, CNS-directed gene therapy and bone marrow transplantation in the murine model of Infantile Neuronal Ceroid Lipofuscinosis (INCL, Infantile Batten disease). We will also determine the efficacy of various novel combinations of small molecule drugs, gene therapy and BMT in the murine model of INCL.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
2R01NS043205-10A1
Application #
8578738
Study Section
Developmental Brain Disorders Study Section (DBD)
Program Officer
Morris, Jill A
Project Start
2002-04-01
Project End
2017-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
10
Fiscal Year
2013
Total Cost
$350,377
Indirect Cost
$109,663
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Shyng, Charles; Sands, Mark S (2014) Astrocytosis in infantile neuronal ceroid lipofuscinosis: friend or foe? Biochem Soc Trans 42:1282-5
Reddy, Adarsh S; Patel, Jigisha R; Vogler, Carole et al. (2014) Central nervous system pathology progresses independently of KC and CXCR2 in globoid-cell leukodystrophy. PLoS One 8:e64647
Sands, Mark S (2014) A Hitchhiker's guide to the blood-brain barrier: in trans delivery of a therapeutic enzyme. Mol Ther 22:483-4
Heldermon, C D; Qin, E Y; Ohlemiller, K K et al. (2013) Disease correction by combined neonatal intracranial AAV and systemic lentiviral gene therapy in Sanfilippo Syndrome type B mice. Gene Ther 20:913-21
Linterman, Kathryn S; Palmer, David N; Kay, Graham W et al. (2011) Lentiviral-mediated gene transfer to the sheep brain: implications for gene therapy in Batten disease. Hum Gene Ther 22:1011-20
Hawkins-Salsbury, Jacqueline A; Reddy, Adarsh S; Sands, Mark S (2011) Combination therapies for lysosomal storage disease: is the whole greater than the sum of its parts? Hum Mol Genet 20:R54-60
Macauley, Shannon L; Pekny, Milos; Sands, Mark S (2011) The role of attenuated astrocyte activation in infantile neuronal ceroid lipofuscinosis. J Neurosci 31:15575-85
Heldermon, Coy D; Ohlemiller, Kevin K; Herzog, Erik D et al. (2010) Therapeutic efficacy of bone marrow transplant, intracranial AAV-mediated gene therapy, or both in the mouse model of MPS IIIB. Mol Ther 18:873-80
Macauley, Shannon L; Wozniak, David F; Kielar, Catherine et al. (2009) Cerebellar pathology and motor deficits in the palmitoyl protein thioesterase 1-deficient mouse. Exp Neurol 217:124-35
Woloszynek, Josh C; Kovacs, Atilla; Ohlemiller, Kevin K et al. (2009) Metabolic adaptations to interrupted glycosaminoglycan recycling. J Biol Chem 284:29684-91

Showing the most recent 10 out of 22 publications