Despite recent advances in the treatment and prevention of cardiovascular disease, stroke remains the third leading cause of death and a leading cause of serious, long-term disability in US. Therapeutic strategies aimed at minimizing the deleterious effects of ischemia on neurons once stroke takes place are still lacking, and clinical trials using neuroprotective agents have largely failed. We uncovered an endogenous mechanism of neuroprotection, whereby neurons respond to ischemia by increasing the number of peroxisomes, highly adaptable small organelles that contribute to neuronal survival by enhancing neuronal cell antioxidant capacity and the ability to cope with metabolic stress during ischemia-reperfusion. The proposed project will use both in vivo and in vitro models of ischemic neural injury to determine if peroxisomal proliferation is increased in neurons after ischemia by the translocation to peroxisomes of an otherwise cytosolic enzyme called soluble epoxide hydrolase (sEH).
Aim 1 will determine if sEH translocation requires binding of its peroxisome-targeting signal-1 (PTS-1), located on the C-terminal, to the peroxisomal shuttle protein peroxin 5 (PEX5).
Aim 2 will determine if sEH translocation contributes to peroxisomal proliferation, which plays a neuroprotective role after cerebral ischemia.
Aim 3 will determine if increased peroxisomal density after cerebral ischemia is mediated though a dual action of sEH to promote peroxisomal biogenesis and suppress peroxisomal degradation. The proposed research is highly significant and innovative both technically and conceptually. Peroxisomal biogenesis has not been previously described in brain after cerebral ischemia, and a role for sEH in this process has not been investigated. If confirmed, the proposed studies will pave the way for a new line of research focusing on peroxisomal biogenesis after stroke, and may lead to the development of novel therapeutic agents for stroke based on promoting peroxisomal translocation of sEH and enhancing the endogenous neuroprotective response to increase peroxisomal biogenesis and prevent their degradation.

Public Health Relevance

The proposed research is aimed at understanding how small organelles called peroxisomes increase in number to protect neurons from stroke. The results will pave the way for the development of new therapeutic agents for stroke based on simulating and enhancing this endogenous neuronal response to injury.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS044313-14
Application #
8634815
Study Section
Neural Oxidative Metabolism and Death Study Section (NOMD)
Program Officer
Bosetti, Francesca
Project Start
2002-06-01
Project End
2016-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
14
Fiscal Year
2014
Total Cost
$353,844
Indirect Cost
$124,075
Name
Oregon Health and Science University
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Zuloaga, Kristen L; Krasnow, Stephanie M; Zhu, Xinxia et al. (2014) Mechanism of protection by soluble epoxide hydrolase inhibition in type 2 diabetic stroke. PLoS One 9:e97529
Siler, Dominic A; Gonzalez, Jorge A; Wang, Ruikang K et al. (2014) Intracisternal administration of tissue plasminogen activator improves cerebrospinal fluid flow and cortical perfusion after subarachnoid hemorrhage in mice. Transl Stroke Res 5:227-37
Mao, L; Jia, J; Zhou, X et al. (2013) Delayed administration of a PTEN inhibitor BPV improves functional recovery after experimental stroke. Neuroscience 231:272-81
Davis, Catherine M; Fairbanks, Stacy L; Alkayed, Nabil J (2013) Mechanism of the sex difference in endothelial dysfunction after stroke. Transl Stroke Res 4:381-9
Jouihan, Sari A; Zuloaga, Kristen L; Zhang, Wenri et al. (2013) Role of soluble epoxide hydrolase in exacerbation of stroke by streptozotocin-induced type 1 diabetes mellitus. J Cereb Blood Flow Metab 33:1650-6
Nelson, Jonathan W; Subrahmanyan, Rishi M; Summers, Sol A et al. (2013) Soluble epoxide hydrolase dimerization is required for hydrolase activity. J Biol Chem 288:7697-703
Zhang, Wenri; Davis, Catherine M; Edin, Matthew L et al. (2013) Role of endothelial soluble epoxide hydrolase in cerebrovascular function and ischemic injury. PLoS One 8:e61244
Rinkevich, Diana; Belcik, Todd; Gupta, Nandita C et al. (2013) Coronary autoregulation is abnormal in syndrome X: insights using myocardial contrast echocardiography. J Am Soc Echocardiogr 26:290-6
Abdu, Emun; Bruun, Donald A; Yang, Dongren et al. (2011) Epoxyeicosatrienoic acids enhance axonal growth in primary sensory and cortical neuronal cell cultures. J Neurochem 117:632-42
Merkel, Matthias J; Liu, Lijuan; Cao, Zhiping et al. (2010) Inhibition of soluble epoxide hydrolase preserves cardiomyocytes: role of STAT3 signaling. Am J Physiol Heart Circ Physiol 298:H679-87

Showing the most recent 10 out of 37 publications